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Abstract
Electromechanical effects are important in semiconductor nanostructures as most of the
semiconductors are piezoelectric in nature. These nanostructures find applications in electronic
and optoelectronic devices where they may face challenges for thermal management. Low
dimensional semiconductor nanostructures, such as quantum dots (QD) and nanowires, are the
nanostructures where such challenges must be particularly carefully addressed. In this
contribution we report a study on thermoelectromechanical effects in QDs. For the first time a
coupled model of thermoelectroelasticity has been applied to the analysis of quantum dots and
the influence of thermoelectromechanical effects on bandstructures of low dimensional
nanostructures has been quantified. Finite element solutions are obtained for different thermal
loadings and their effects on the electromechanical properties and bandstructure of QDs are
presented. Our model accounts for a practically important range of internal and external
thermoelectromechanical loadings. Results are obtained for typical QD systems based on
GaN/AlN and CdSe/CdS (as representatives of III–V and II–VI group semiconductors,
respectively), with cylindrical and truncated conical geometries. The wetting layer effect on
electromechanical quantities is also accounted for. The energy bandstructure calculations for
various thermal loadings are performed. Electromechanical fields are observed to be more
sensitive to thermal loadings in GaN/AlN QDs as compared to CdSe/CdS QDs. The results are
discussed in the context of the effect of thermal loadings on the performance of QD-based
nanosystems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Spatially confined motion of electrons in low dimensional
semiconductor nanostructures (LDSNs) is attracting increasing
attention of physics and engineering communities due to
their current and potential applications in optoelectronics,
biotechnology and other areas. LDSNs are strained structures
as they are normally embedded in a host material with different
structural properties. Piezoelectric effects in LDSNs are also
important due to the fact that most of the semiconductor
materials are piezoelectric in nature [1, 2]. Strain [3, 4] and
piezoelectric effects [5] are being used as tuning parameters
for the optical response of LDSNs in band gap engineering. On
the other hand, thermal effects coupled with electric [6–13] and
mechanical [14] fields in LDSNs have also become important.
Indeed, as thermoelectric and thermoelastic effects are often

significant in LDSNs [6, 13, 14], it is reasonable to expect
that the temperature may also be used as a tuning parameter in
band gap engineering [12, 13]. One of the difficulties related
to this lies with the fact that the novel LDSN-based electronic
and optoelectronic devices may face challenges for thermal
management [6]. It is expected that by integrating LDSN
materials into critical regions of microelectronic circuits, the
excess heat that limits device performance will be effectively
removed [7]. Therefore, a systematic study on thermal
loadings is required for analyzing and optimizing their effects
on optoelectronic properties of LDSNs. Furthermore, since
there are many practical situations where the interaction
of thermopiezoelectric structures with other media such as
acoustic [15] and gas/fluid [16] needs to be accounted for, the
present formulation can act as a foundation for the study of
such coupled models in the context of LDSNs.

0957-4484/09/125402+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0957-4484/20/12/125402
mailto:spatil@wlu.ca
mailto:rmelnik@wlu.ca
http://stacks.iop.org/Nano/20/125402


Nanotechnology 20 (2009) 125402 S R Patil and R V N Melnik

Our major attention in this paper is given to QDs,
the nanostructures that are considered to be a basis for
many innovatory nanoelectronic/optoelectronic devices [2],
where thermal effects may also become important. This
includes applications of QDs in low temperature Peltier
refrigeration [17] and thermal rectifiers [18] as well as
their applications for higher temperature ranges. Without
accounting for the thermal field, both linear and nonlinear
electromechanical effects in QDs and their influence on
bandstructures are now better understood [1, 19–21]. Earlier
studies have been focusing on coupled thermoelectric effect
contributions at the device level based on energy balance
models, generalizing drift–diffusion models and allowing us to
account for non-local and non-equilibrium processes [22–25].
More recently, generalizations of drift–diffusion models
have been carried out to account for quantum effects in
LDSNs [26, 27]. At the same time, recent studies have been
devoted to elucidating the importance of thermal effects in
LDSNs, including the temperature induced stress resulting
in phase transitions [28] as well as temperature-dependent
phase stability [29] in nanostructures. Although the study of
fully coupled thermoelectromechanical effects in QDs has both
technological as well as fundamental interest, it has not been
carried out until now.

In this paper, we present a mathematical model describing
coupled thermoelectromechanical effects in LDSNs, its special
cases and generalizations. Our particular focus is on the
influence of thermoelectromechanical effects on properties of
QDs. Furthermore, a major focus is given to GaN/AlN and
CdSe/CdS QD systems, as representatives of III–V and II–
VI group semiconductors, respectively. These semiconductors
are wurtzite (WZ) crystals and the former ones (GaN-
based) are known as potentially important thermoelectric
materials [13]. In our study we take a sufficiently wide range
of thermal loadings of our structures, from 0 to 1000 K,
keeping in mind their potential applications as thermoelectrics
and their operations in various temperature regimes. It is
for this entire range of thermal loadings that the influence
on electromechanical fields and energy bandstructures is
studied. To be closer to realistic experimental setups, the
geometries and dimensions used in this study are similar
to those of experimentally grown QDs [30]. We also
account for the wetting layer (WL) because a conventional
analysis of QD structures without accounting for the WL
may not be sufficient for an adequate characterization of
QDs [31–33].

The paper is organized as follows. Section 2
provides details of the theoretical formulation of the fully
coupled thermoelectromechanical problem for QDs along with
constitutive equations and the explicit form of corresponding
expressions for the wurtzite crystals we focus on. In section 3,
the results of our study of the influence of thermal effects
on the electromechanical behavior of QDs and the energy
bandstructure, obtained with an 8-band k · p model, for QDs
are presented. Section 4 highlights major conclusions drawn
from this study.

2. Theory

In what follows, we formulate a mathematical model in order
to study thermoelectromechanical effects in QDs. A general
two-dimensional (2D) axisymmetric model is developed with
coupled multi-physics governing equations. The model is
based on a coupled system of equilibrium equations of
elasticity, electrostatics and heat transfer.

2.1. Coupled system of equations for mechanical, electric and
thermal fields

The linear fundamental equations for the thermoelectrome-
chanical structure occupying volume �, under steady state
conditions, can be summarized as follows [34, 35]:

mechanical equilibrium equation,

σi j, j + fi = 0, (1)

the equation of electrostatics,

Di,i − q = 0, (2)

the thermal energy balance equation,

hi,i − k = 0. (3)

Here σi j are stress tensor components, Di are electric
displacement vector components, hi are the components of the
heat flux vector, and fi , q and k are body mechanical forces,
electric charge and heat source in �, respectively. Coupling
of equations (1)–(3) is implemented through constitutive
equations described in section 2.3.

2.2. Gradient equations

Gradient equations correspond to the relationships between the
linear strain and mechanical displacement, the electric field
and electric potential, and the thermal field and temperature
change. They are stated respectively as,

εkl = 1
2 (uk,l + ul,k), (4)

Ek = −V,k, (5)

Qk = −�,k, (6)

where εkl , Ek, Qk, u, V and � are the components of the strain
tensor, electric field vector, thermal field vector, mechanical
displacement vector, electric potential and temperature change
from the reference, respectively. In section 2.5, we will
extend equation (4) to account for lattice mismatch in typical
nanostructures.

2.3. Constitutive equations

The (Helmholtz) free energy function, accounting for three
independent variables, ε, E , and �, for our system has the
following form:

φ(εi j , Ei ,�) = 1
2 ci jklεi jεkl − ei jk Eiε jk − 1

2 ∈i j Ei E j

− βi j�εi j − pi Ei� − 1
2 aT �2, (7)
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where aT = cV
ε /T0, and cV

ε is the heat capacity at constant
strain and electric field. The constitute relationships are
derived from (7) as

σi j = ∂φ/∂εi j, Di = −∂φ/∂ Ei , S = −∂φ/∂�,

(8)
where S denotes entropy. These constitutive relations relating
thermoelectromechanical quantities are expressed as,

σi j = ci jklεkl − ei jk Ek − βi j�, (9)

Di = eiklεkl+ ∈ik Ek + pi� + Psp
i , (10)

S = βi jεi j + pi Ei + aT �, (11)

where ci jkl, ei jk and ∈ik are the elastic moduli, piezoelectric
constants and dielectric constants, respectively. Psp

i is the
spontaneous polarization, and pi and βi j are thermoelectric
and thermomechanical coupling constants, respectively. In
this linear case, the thermoelectric coupling coefficient is
connected to the pyroelectric coefficient defined via ∂ Psp

i /∂�

and measured under constant ε and E .

2.4. Special cases and generalizations

The model (1)–(3), (4)–(6), (9)–(11) we are focusing on in
this contribution covers several important special cases which
are becoming increasingly important in applications of low
dimensional nanostructures such as quantum dots and often
analyzed separately:

• piezoelectric (or more generally electromechanical)
models;

• thermoelectric models;

• thermomechanical models.

In what follows, we briefly provide details on each of these
three important special cases.

2.4.1. Piezoelectric or electromechanical effects. Constitu-
tive equations of the linear piezoelectricity have the following
form:

σi j = ci jklεkl − ei jk Ek, (12)

Di = ei jkε jk+ ∈i j E j . (13)

The well-posedness of the corresponding mathematical models
in this and in more general cases was shown in [36, 37] (see
also references therein), while the analysis of the special types
of boundary conditions was carried out in [38].

Coupled models of piezoelectricity in a general setting
were analyzed in [39–41]. In [1] the resulting models of
piezoelectricity were coupled with the Schrodinger equation
for electronic bandstructure analysis of low dimensional
nanostructures. This has been extended further to account for
higher order effects such as electrostriction in [42].

2.4.2. Thermoelectric effects. In this case constitutive
equations are usually written in terms of the electric current
density j el

i and the heat flux hi as

j el
i = ρEi − ρSb�,i , (14)

hi = −ρSb�V ,i −(κi j + S2
bρ�)�,i , (15)

where ρ is the electric conductivity, κ is the thermal
conductivity, and Sb is the Seebeck coefficient (in the general
case, these coefficients are temperature dependent), where the
thermoelectric figure of merit for isotropic materials is defined
through these coefficients as Z = �ρS2

b/κ [43].
Such models of coupled thermoelectricity were studied

in [44] in the device application context. The relation (15)
generalizes Fourier’s law to account for both Peltier and
Thompson effects. The governing equations in this case are

j,el
i = 0, hi,i − K = 0, (16)

with K = −jel · ∇V . Due to this latter term (that can
be interpreted as ‘convective’), the resulting nonlinear model
is a generalization of conventional linear models, including
a thermoelectric model accounting for the linear Seebeck
effect [45] in which case we have hi = −κi j�, j and the
coupling is effectively realized via the first equation in (16).
For example, in the one-dimensional case, when no Peltier–
Thompson effects are present, we have the relationship −E +
Sb d�/dx = 0 with the temperature-dependent Seebeck
coefficient Sb which replaces (16) in this particular case.

2.4.3. Thermomechanical effects. Constitutive equations
for the case of thermomechanical interactions follow directly
from our representations (9)–(11) and details on the
corresponding linear models, their generalizations, and
numerical methodologies for their solutions can be found
in [46–51].

2.4.4. Generalization to thermo-magneto-electromechanical
problems. Finally, we mention that a straightforward
generalization of our model (1)–(3), (4)–(6), (9)–(11) to
account for the magnetic field follows from the following
representation of the Helmholtz free energy function:

�(εi j , En, θ, Bp) = φ(εi j , Ei ,�) + 1
2νpq Bp Bq

− πpi jεi j Bp − λpm Em Bp − τp Bp�. (17)

The resulting constitutive equations in this case have the
following form:

σkl = (∂�/∂εkl)E,B,�

= ci jklεi j − emkl Em − πpkl Bp − βkl�, (18)

Dn = −(∂�/∂ En)ε,B,�

= eni jεi j+ ∈mn Em + λpn Bp + pn�, (19)

Hq = (∂�/∂ Bq)ε,E,�

= − πqi jεi j − λqm Em + νpq Bp − τq�, (20)

S = −(∂�/∂�)ε,E,B

= βi jεi j + pm Em + τp Bp + aT �, (21)
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where, π, λ and τ are the piezo-magnetic, electro-magnetic,
thermo-magnetic coupling constants, respectively, whereas
ν = 1/μ,μ is permeability. This model is used in [52]
to study thermo-magneto-electro-elastic effects in nanowire
superlattices. Another generalization has recently been
developed in [1, 53] where nonlinear strain effects were taken
into account.

Next, we provide the explicit expressions for the model we
focus on in the case of cylindrical wurtzite nanostructures.

2.5. Explicit form of governing equations for WZ
nanostructures in cylindrical co-ordinates

Governing equations for WZ structures in this case are
axisymmetric, hence all the thermal, electric and mechanical
field solutions are axisymmetric as well. Therefore, the
original 3D problem can be reduced in this case to a simpler
2D problem [19]. The linearly independent elastic constants
and piezoelectric constants in a crystal with WZ symmetry are
given as [5, 57]

C1111 = C11, C1122 = C12, C1133 = C13,

C3333 = C33, C2323 = C44,

C2121 = (C11 − C12)/2, e311 = e31,

e333 = e33, e113 = e15, β11 = β1,

β33 = β3, ∈11 = ∈1, ∈33 = ∈3 .

(22)

The electromechanical balance equations (1) and (2) in the
cylindrical co-ordinates for the axisymmetric case take the
following form [36]:

∂σrr

∂r
+ ∂σrz

∂z
+ σrr − σθθ

r
= 0, (23)

∂σrz

∂r
+ ∂σzz

∂z
+ 1

r
σrz = 0, (24)

∂ Dr

∂r
+ ∂ Dz

∂z
+ 1

r
Dr = 0. (25)

These equations are invariant with respect to rotations around
the z axis, e.g. [57]; hence, solutions can be separated into
a (r, z) part and a θ part, subject to adequate boundary
conditions. The constitutive relations in equations (9) and (10)
then take the following form for WZ nanostructures:

σrr = C11εrr + C12εθθ + C13εzz − e31 Ez − β1�,

σrz = C44εrz − e15 Er ,

σzz = C13εrr + C13εθθ + C33εzz − e33 Ez − β3�,

Dr = e15εrz+ ∈1 Er ,

Dz = e31εrr + e31εθθ + e33εzz+ ∈33 Ez + p3� + Psp
z .

(26)
To take into account the lattice mismatch, the strain tensor

components in equation (4) take the following form:

εrr = ∂ur

∂r
− ε∗

a εzz = ∂uz

∂z
− ε∗

c

εθθ = ur

r
− ε∗

a εrz = 1

2

(
∂ur

∂z
+ ∂uz

∂r

)
,

(27)

with ε∗
a = am−aQD

aQD
and ε∗

c = cm−cQD

cQD
inside the QD. Quantities,

am, cm and aQD, cQD are the lattice constants of the matrix and
the QD, respectively, while quantities, ε∗

a and ε∗
c are the local

intrinsic strains (lattice mismatch) along the a and c directions,
respectively. The directions a and c correspond to the shorter
and longer dimensions of the unit cell of the WZ crystal,
respectively. As the substrate is relatively large compared
to the QD, we follow common practice to neglect lattice
mismatch inside the matrix, i.e. ε∗

a = ε∗
c = 0 [2, 19, 21, 58, 59].

Here, we neglect the Seebeck effect due to the relatively
smaller values of Seebeck coefficients for semiconductor
materials of present interest, ∼−10 V K−1 [54, 55] and
thermal equilibrium is assumed. Therefore, the temperature
change becomes spatially independent, effectively leading to
the determination of the solution of the equations (1) and (2)
only. However, these equations are coupled via constitutive
relations (9) and (10) [56].

2.6. Bandstructure calculations

In order to highlight further our point regarding the influence of
thermoelectromechanical effects on optoelectronic properties,
we analyze the bandstructure with an 8-band k · p model.
We consider two conduction bands coupled with six valance
bands including heavy-hole, light-hole and spin–orbit bands.
The crystal-field splitting is also accounted for. Electron–
hole states are the eigenstates of the 8-band envelope function
equation:

H� = E�, (28)

where H is the 8×8 matrix of the Hamiltonian, � is the eight-
component column of the envelope wavefunction and E is the
energy. The Hamiltonian H can be written as

H =

⎛
⎜⎜⎜⎜⎝

H k
e +H ε

e +Ec 0

H k
h +H ε

h +Ev

H k
e +H ε

e +Ec

0 H k
h +H ε

h +Ev

⎞
⎟⎟⎟⎟⎠+ eV .

(29)
Here, H k

e and H ε
e are the kinetic and strain dependent parts

of the electron Hamiltonian, respectively, whereas H k
h and H ε

h
are the 3 × 3 matrix of the kinetic and strain dependent parts
(the spin–orbit interaction and crystal-field splitting terms are
included) of the hole Hamiltonian, respectively. Ec and Ev are
the energies of unstrained conduction- and valence-band edges,
respectively, e is the absolute value of the electronic charge and
V is the piezoelectric potential. The unstrained valance band
edge of AlN at T = 0 K is taken as a reference. The strain
dependent electron–hole part of the Hamiltonian, piezoelectric
potential and energy band edges are temperature dependent.

The underlying algebraic eigenvalue problem that needs
to be solved after discretizing equations (28) and (29) can
lead to a number of non-trivial difficulties discussed in detail
in [60, 61], while the variational formulations of equations (28)
and (29), effectively used in our finite element method, can be
found in [62]. We consider the temperature dependence of the
band gap energy with the following relation,

Eg(�) = Eg(0) − α��2

β� + �
, (30)
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(a) (b)

(c) (d)

Figure 1. Geometry and co-ordinate system for the QD systems in the (r, z) plane. (a) Co-ordinate system, (b) cylindrical QD system,
(c) cylindrical QD system with WL, (d) conical QD system with WL.

along with αθ and βθ as Varshni coefficients [63]. Further
details of the expressions and parameters for the 8-band k · p
Hamiltonian can be found in [5, 64, 65].

3. Results and discussions

Figure 1 shows the geometric details of the QD systems, where
we consider three different cases with respect to geometries.
The geometries we consider are: cylindrical without WL,
cylindrical with WL, and truncated conical with WL. GaN/AlN
and CdSe/CdS are the two different QD systems, which have
been taken here for the analysis, as representatives of III–
V and II–VI group semiconductors, respectively. Dirichlet
boundary conditions are imposed along boundaries 1, 2, and

3 (see figure 1), while ur = 0,
∂uz

∂r = 0, ∂V
∂r = 0 and

∂T
∂r = 0 at boundary 4 (denoted by bc4 in figure 1). Due to the
axisymmetry of the system (equations, geometry and boundary
conditions) there is no angular dependence.

The geometries and dimensions we consider here are
based on experimental results (e.g. [30]), and the temperature
range from 0 to 1000 K covers most thermoelectric
applications of interest. As the deposition temperatures
are normally above 1000 K [66, 67], we do not consider
a special case of zero lattice mismatch inside QDs. We
approximate experimentally grown (hexagonal) pyramidally
shaped QDs [30] by truncating conical structures. This
approximation can be made without significant error [20].
Physical parameters used in the calculations are given in

5
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Table 1. Physical parameters of wurtzite GaN, AlN, CdSe and CdS.

Constants GaN AlN CdSe CdS

Stiffness coefficients (GPa)
c11 390 [73] 396 [73] 74.6 [74] 90.68 [56]
c12 145 [73] 137 [73] 46.1 [74] 58.09 [56]
c13 106 [73] 108 [73] 39.3 [75] 50.9 [56]
c33 398 [73] 373 [73] 81.7 [74] 93.8 [56]
c44 105 [73] 116 [73] 13.0 [74] 14.3 [76]

Permittivity
ϒ11 9.28 [73] 8.67 [73] 9.29 [74] 8.28 [77]
ϒ33 10.01 [73] 8.57 [73] 10.16 [74] 8.73 [77]

Piezoelectric coefficients (C m−2)
e15 −0.49 [73] −0.6 [73] −0.138 [74] −0.212 [78]
e31 −0.49 [73] −0.6 [73] −0.16 [74] −0.265 [78]
e33 0.73 [73] 1.46 [73] 0.347 [74] 0.385 [78]

Pyroelectric coefficients (C m−2 K−1)
p1 × 10−6 0.91 [79] 7.5 [79] −3.5 [80] −4.0 [56, 80]

Thermal expansion coefficients (K−1)
α × 10−6

αa 5.57 [81] 4.2 [81] 4.13 [75] 4.3 [78]
αc 3.17 [81] 5.3 [81] 2.76 [75] 2.77 [78]

Young’s modulus E (GPa) 181 [82] 308 [83] 43.1 [78] 48.1 [78]
Poisson ratio ν 0.352 [82] 0.287 [84] 0.37 [78] 0.37 [78]
Spontaneous polarization Psp (C m−2) −0.029 [73] −0.081 [73] 0.006 [85] 0.002 [85]
Lattice constant (Å)

a 3.189 [73] 3.112 [73] 4.3 [78] 4.135 [78]
c 5.185 [73] 4.982 [73] 7.01 [78] 6.749 [78]

Stress–temperature coefficient (Pa K−1)
(Calculated using [86])

β1 × 105 5.57 −4.44 1.1 −0.98
β3 × 105 −8.66 6.9 −0.13 0.116

Table 2. Magnitudes of energy band gap related parameters for
wurtzite GaN and AlN.

Bandstructure parameters GaN AlN

Eg (eV) [5] 3.475 6.23
a⊥

c (eV) [5] −8.2 −5.4
a‖

c (eV) [5] −9.5 −12.0
d1 (eV) [5] −3.0 −3.0
d2 (eV) [5] 3.6 3.6
d3 (eV) [5] 8.82 9.6
d4 (eV) [5] −4.41 −4.8
d5 (eV) [5] −4.0 −4.0
α�(10−4 eV K−1) 10.4 [63] 20.5 [87]
β� (K) 1100 [63] 1479 [87]

tables 1 and 2. The values of lattice mismatch for GaN/AlN
QD systems are: ε∗

a = −2.47% and ε∗
c = −4.07%, whereas

for the CdSe/CdS QD systems they are: ε∗
a = −3.99% and

ε∗
c = −3.87%. The calculated values of electromechanical

quantities at (r, z) = (0, 0) are given in table 3 for direct
comparison. The results of the bandstructure calculations
at different temperatures are also presented for truncated
conically shaped GaN/AlN QDs.

All our numerical experiments have been performed
under the condition for the relative errors between successive
refinements to be less than 10−6. In our case it has been
achieved with around 105 triangular elements. Numerical
solutions reflect the effect of the decreasing computational
error when the solution approaches the boundary of the
domain. Our results in figures 2–5 clearly depict this feature.

3.1. GaN/AlN and CdSe/CdS: cylindrical QDs without WL

First, we report results for cylindrical GaN/AlN and CdSe/CdS
QDs without WL. These QDs have a radius of 4 nm and a
height of 4 nm.

Figure 2 shows the effect of temperature on electrome-
chanical quantities for the cylindrical GaN/AlN QDs without
WL. Inside the QD, the magnitude of εrr (along the z-axis
at r = 0, figure 2(a)) decreases with an increase in tempera-
ture. At the center of the QD the magnitudes are ∼0.65% at
0 K and ∼0.4% at 1000 K. The magnitude of εrr decreases
towards zero (unstrained region) faster at higher temperature
than at lower temperature. As seen from figure 2(b), εzz is
negative everywhere for all temperatures except for the case of
0 K, where near the edges of the QD it takes positive values.
The magnitude of εzz at the center of the QD, i.e. at z = 0, is
∼0.18% at 0 K, which increases with an increase in tempera-
ture to ∼0.475% at 1000 K. The potential difference across the
top and bottom of the QD decreases with an increase in temper-
ature, from ∼2.45 V at 0 K to ∼2.2 V at 1000 K (figure 2(c)).
The electric field component Ez exceeds ∼6 MV cm−1 near the
edges of the QD (figure 2(d)). Inside the QD, the Ez decreases
with an increase in temperature, for example, at the center of
the QD, Ez = ∼6 MV cm−1 at 0 K and Ez = ∼5 MV cm−1

at 1000 K. Our results at 300 K are in excellent agreement with
recent theoretical [19, 58, 59] and experimental [30] reports.

Figure 3 shows the effect of temperature on the
electromechanical quantities for cylindrical CdSe/CdS QDs
without WL. Quantities εrr (figure 3(a)), εzz (figure 3(b)),

6
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Figure 2. Effect of temperature on electromechanical quantities for cylindrical GaN/AlN QDs without WL. (a) Strain, εrr , (b) strain, εzz ,
(c) electric potential, V , (d) electric field, Ez .

Table 3. Electromechanical parameters at (r, z) = (0, 0) for GaN/AlN QD systems.

Cylindrical without WL Cylindrical with WL Conical truncated with WL
Electromechanical
parameters θ = 0 K θ = 1000 K θ = 0 K θ = 1000 K θ = 0 K θ = 1000 K

εrr (%) 0.65 0.4 0.65 0.4 1.05 0.8
εzz (%) 0.18 0.475 0.36 0.73 0.12 0.5
V (V) 2.45 2.2 3.1 2.65 3.4 3.0
Ez (MV cm−1) 6.0 5.0 5.8 4.9 6.7 5.8

V (figure 3(c)) and Ez (figure 3(d)) show similar qualitative
behavior as their equivalents for GaN/AlN. The magnitudes of
εrr , V and Ez are much smaller, while the magnitude of εzz

is much higher, as compared to those of GaN/AlN. Following
are the values of respective electromechanical quantities at the
center of the CdSe/CdS QD:

εrr : at 0 K, ∼0.3% and at 1000 K, ∼0.05%
εzz : at 0 K, ∼1.2% and at 1000 K to ∼0.95%
V : at 0 K, ∼0.62 V and at 1000 K to ∼0.60 V

Ez : at 0 K, ∼1.3 MV cm−1 and at 1000 K to
∼1.35 MV cm−1.

As expected, all the electromechanical quantities exhibit
perfect symmetry in cylindrical QDs without WL. The
electromechanical parameters for the GaN/AlN QD system
are much more sensitive to temperature than their equivalents
for CdSe/CdS. This can be attributed to the low values
of stress–temperature coefficients (βi ) and relatively weak
electromechanical coupling in CdSe/CdS. The only difference
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Figure 3. Effect of temperature on electromechanical quantities for cylindrical CdSe/CdS QDs without WL. (a) Strain, εrr , (b) strain, εzz ,
(c) electric potential, V , (d) electric field, Ez .

in the influence of temperature effects on electromechanical
quantities in the CdSe/CdS system is quantitative and
even that is too small, whereas, in the case of GaN/AlN
all electromechanical quantities vary significantly with
temperature. Therefore, based on this observation, next we
proceed to the study of QDs with WL and different geometries,
focusing exclusively on GaN/AlN QDs.

3.2. GaN/AlN: cylindrical QDs with WL

Figure 4 shows the effect of temperature on electromechanical
quantities for cylindrical GaN/AlN QDs with WL. The WL
is 1 nm thick, while other dimensions of the structure are the
same as those in the case without WL.

Very similar values of εrr (figure 4(a)) are observed in both
cases where we consider the GaN/AlN QD with and without
WL, except for the WL region, where the difference in values
is ∼0.5%. However, values of εzz (figure 4(b)) are observed
to be much higher in the case with WL compared to those
values obtained in the case of the QD without WL. In the

case of the QD with WL, the value of εzz is almost doubled
compared to the case of the QD without WL. Higher values
of strain signify that the structure with WL is less relaxed
than the structure without WL. With inclusion of the WL,
the potential difference across the ends of the QD increases,
while Ez decreases (except for the WL region, where Ez =
∼7 MV cm−1). Accounting for WL provides an additional
region in the structure. The resultant geometry becomes
asymmetric about the r -axis, which is clearly reflected in our
results. Similar strain profiles for QDs with WL are reported
in [58, 59].

The qualitative effect of temperature on electromechanical
quantities, with (figure 4) and without WL (figure 2) is similar
for both geometries analyzed here. We also note that the
WL presence hardly modifies the strain component values in
zincblende materials [68]. In contrast to this, we observe
significantly modified values of εzz in wurtzite GaN/AlN
QDs. This difference in strain behavior can be attributed
to the relatively prominent piezoelectric nature of wurtzite
materials, which provides an additional degree of freedom for
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Figure 4. Effect of temperature on electromechanical quantities for cylindrical GaN/AlN QDs with WL. (a) Strain, εrr , (b) strain, εzz ,
(c) electric potential, V , (d) electric field, Ez .

electromechanical loadings to relax. Hence, we conclude that
the WL effect on electromechanical quantities significantly
differs in zincblende and wurtzite materials. Earlier it has been
demonstrated that the ground eigenstate of the entire structure
can be considerably affected by the presence of the WL [31].
This indicates that further studies of thermoelectromechanical
effects in QDs with WL could be an important avenue of
research.

3.3. GaN/AlN: truncated conical QDs with WL

Figure 5 shows the effect of temperature on electromechanical
quantities for truncated conical GaN/AlN QDs with WL. The
WL is 1 nm thick and the top radius, the bottom radius and
the height of the QDs under consideration are 4 nm, 8 nm and
4 nm, respectively.

The magnitudes of the electromechanical quantities are
given in table 3 for direct comparison of the values for
different geometries of the GaN/AlN QDs. As the temperature
increases the strain values decrease rapidly from peak values

at edges on either side of the QD. The magnitudes of εrr ,
V and Ez are found to decrease with temperature, while
εzz is observed to increase with temperature. The potential
difference between the base and the top of QDs creates a deep
potential well, for holes at the bottom and for electrons at
the top [21]. Thus, the decrease in potential difference with
temperature will lead to shallower potential wells, relatively
less confinement. A giant built-in electric field of several
MV cm−1 is a characteristic of GaN/AlN structures and has
been observed in several experiments [21, 33, 69] which agrees
well with our simulated results (6–8 MV cm−1). Due to this
internal electric field, GaN-based LDSNs require relatively
higher carrier densities to generate optical gain [33, 70].
Relatively lower carrier densities to generate optical gain may
be expected at higher temperatures as our results indicate
a decrease in this internal electric field with an increase in
temperature.

The highest magnitude of strain tensor component at 0 K,
εrr at z = 0, among studied structures of GaN/AlN is about
1%, which is observed in the case of the truncated conical

9
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Figure 5. Effect of temperature on electromechanical quantities for truncated conical GaN/AlN QDs with WL. (a) Strain, εrr , (b) strain, εzz ,
(c) electric potential, V , (d) electric field, Ez .

QDs, whereas εzz takes its maximum value of ∼0.36% in the
case of the cylindrical QDs with WL. The potential difference
and electric field take their highest magnitudes at 0 K which
are ∼3.4 V and ∼6.7 MV cm−1, respectively, for the case of
truncated conical QDs.

3.4. GaN/AlN QDs: bandstructure

Most of the electromechanical quantities take higher values
and show a significant variation with temperature for truncated
conical GaN/AlN QDs with WL. Hence, in order to analyze
this issue further, wavefunctions for the ground state and
first excited state for truncated conical GaN/AlN QDs with
WL under different thermoelectromechanical loadings are
calculated using an 8-band k · p model and are presented
in figures 6 and 7. The significant influence of the WL on
the wavefunctions of the QD is discussed in our previous
work [31, 32]. In the absence of any thermoelectromechanical
loadings we observe the localization at the center of the QDs

with the ground state energy, E1, at about 4.343 236 eV and
with the first excited state E2 = 4.378 34 eV (figures 6(a)
and (b)) [31, 32]. However, the electrons are pushed to the
QD top when piezoelectric effects are taken into account. This
is due to the significantly higher magnitudes of the electric
potential and the nature of its profile (figure 5(c)) [5, 20]. The
ground state and excited state energies are increased when the
piezoelectric effects on bandstructure are taken into account
(figures 6(c) and (d)). This effect was experimentally observed
through magneto-tunneling spectroscopy measurements that
allow the mapping of the electron wavefunctions [71] and was
also theoretically proved [72]. The lowest state energies are,
E1 = 4.373 267 eV and E2 = 4.418 84 eV. These results are in
agreement with previous reports on similar geometries [5, 33].

In order to demonstrate the effect of the thermal loading,
we present the ground state and first excited states of the
electronic system for T = 600 and 1000 K cases in figure 7.
The qualitative behavior of electron localizations is dominated
by the piezoelectric potentials even at higher temperatures.
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Figure 6. The influence of electromechanical effects on the bandstructure of truncated conical GaN/AlN QDs with WL. (a) Ground state
energy E1 without thermopiezoelectric effects, (b) first excited state energy E2 without thermopiezoelectric effects, (c) ground state energy E1

with piezoelectric effects, (d) first excited state energy E2 with piezoelectric effects.

This is due to the fact that thermal loadings do not change
the qualitative profiles of the electromechanical quantities
and hence electron localization remains the same as in the
case of the bandstructure with piezoelectric effects taken
into account. The lowest state energies of the electronic
system have been significantly reduced as compared to the
case without accounting for temperature effects. This results
in subband energies having rigid shifts due to the thermal
loadings. The lowest state energies at T = 600 K are,
E1 = 4.254 236 eV and E2 = 4.295 872 eV (figures 7(a)
and (b)). At T = 1000 K qualitatively localization remains the
same, while further reduced lowest state energies are observed,
E1 = 4.039 266 eV and E2 = 4.077 852 eV (figures 7(c)
and (d)). Note that the eigen-energies of electronic states
are increased when piezoelectric effects are accounted for
and are decreased when thermal loadings are accounted for.
Therefore, there could be a situation where these loadings
nullify each other’s effects on eigen-energies of electronic
states. In the present case it can be observed below 600 K.
A significant reduction in energies of the electronic states
highlights the importance of taking into account operating
temperature contributions in the analysis of the QD-based
electronic/optoelectronic devices [33] and other applications of
QDs.

4. Conclusions

In this study, based on a fully coupled multi-physics
model, we have analyzed for the first time combined
contributions of thermoelectromechanical effects in GaN/AlN
and CdSe/CdS QDs with different geometries, accounting
for the WL. It has been found that GaN/AlN QD systems
(III–V group semiconductors) are more sensitive to thermal
loadings compared to CdSe/CdS QD systems (II–VI group
semiconductors). Thermal loadings lead to the increase
in magnitude of the strain tensor component εrr and
decrease in εzz . However, the electric potential and the
electric field are observed to decrease with increase in
temperature. Relatively lower carrier densities to generate
optical gain may be expected at higher temperatures. The
WL effect on thermoelectromechanical distributions differs
significantly in zincblende and wurtzite nanostructures. A
significant reduction in electronic state energies due to
thermal loadings is observed. Thus, in addition to
electromechanical tuning, the operating temperature can
also provide an additional tuning parameter in band
gap engineering of QDs. However, there could be a
situation where electromechanical and thermal loadings may
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Figure 7. The influence of thermopiezoelectric effects on the bandstructure of truncated conical GaN/AlN QDs with WL. (a) Ground state
energy E1 with thermopiezoelectric effects, T = 600 K, (b) first excited state energy E2 with thermopiezoelectric effects, T = 600 K,
(c) ground state energy E1 with thermopiezoelectric effects, T = 1000 K, (d) first excited state energy E2 with thermopiezoelectric effects,
T = 1000 K.

nullify their effects on eigen-energies of electronic states,
making the bandstructures of QDs unaffected in such
cases by thermoelectromechanical effects. The observed
phenomena emphasize the importance of the fully coupled
thermopiezoelectric models in studying the properties of
LDSNs, in particular QDs.
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