
Dynamic multi-axial behavior of shape memory alloy
nanowires with coupled thermo-mechanical phase-field
models

R. P. Dhote • R. N. V. Melnik • J. Zu

Received: 13 July 2013 / Accepted: 22 March 2014 / Published online: 18 April 2014

� The Author(s) 2014

Abstract The objective of this paper is to provide

new insight into the dynamic thermo-mechanical

properties of shape memory alloy (SMA) nanowires

subjected to multi-axial loadings. The phase-field

model with Ginzburg–Landau energy, having appro-

priate strain based order parameter and strain gradient

energy contributions, is used to study the martensitic

transformations in the representative 2D square-to-

rectangular phase transformations for FePd SMA

nanowires. The microstructure and mechanical behav-

ior of martensitic transformations in SMA nanostruc-

tures have been studied extensively in the literature for

uniaxial loading, usually under isothermal assump-

tions. The developed model describes the martensitic

transformations in SMAs based on the equations for

momentum and energy with bi-directional coupling

via strain, strain rate and temperature. These govern-

ing equations of the thermo-mechanical model are

numerically solved simultaneously for different

external loadings starting with the evolved twinned

and austenitic phases. We observed a strong influence

of multi-axial loading on dynamic thermo-mechanical

properties of SMA nanowires. Notably, the multi-axial

loadings are quite distinct as compared to the uniaxial

loading case, and the particular axial stress level is

reached at a lower strain. The SMA behaviors

predicted by the model are in qualitative agreements

with experimental and numerical results published in

the literature. The new results reported here on the

nanowire response to multi-axial loadings provide

new physical insight into underlying phenomena and

are important, for example, in developing better SMA-

based MEMS and NEMS devices

Keywords Shape memory alloy � Thermo-

mechanical coupling � Multi-axial loading �
Phase-field model � Nanowire

1 Introduction

The unique shape recovering characteristics, high

energy density, and high actuation strain of shape

memory alloys (SMAs) make them ideal candidates

for use in macro-, micro-, and nano- scale actuators,

sensors and transducers [1–6]. The shape recovering

characteristics give rise to the complex nonlinear

mechanical behavior of these materials. The com-

plexity arises because of the coupling between thermal
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and mechanical (or structural) physics, and due to

martensitic transformations (MTs)

SMAs have been extensively studied (see e.g., [7–

11]) and used in commercial applications [10, 12–16].

Most of the applications to date are designed to exploit

the uniaxial properties of SMA wires, and there is a

vast literature on experimental data of ubiquitous

uniaxial tensile tests. However, in many of the

applications in fields such as bioengineering and

nanotechnology, SMA specimens are often subjected

to multi-axial loadings [14, 17–19]. For such advanced

applications, further knowledge of multi-axial prop-

erties of SMAs is required, yet very few experimental

data on multi-axial response of SMA specimens are

available in the literature [20–26]. Tokuda et al. [20]

and Sittner et al. [21] conducted combined tension-

torsion experiments on thin wall Cu- based polycrys-

talline SMA specimens and reported a coupling

between tension and torsion during forward and

reverse transformations that can be used to control

the axial strain via torque and vice versa. The variation

in mechanical properties subjected to multi-axial

loadings has been experimentally confirmed by Lim

and McDowell [22], and Bouvet et al. [23]. McNaney

et al. [24] investigated variations in mechanical

responses during biaxial tension-torsion experiments

on NiTi thin wall tubes subjected to various loading

and unloading paths under isothermal conditions.

Recently, Lavernhe-Taillard et al. [25] and Grabe

and Bruhns [26] conducted several multi-axial ten-

sion-torsion experiments on thin wall NiTi tubes

which showed significant differences in mechanical

behavior of SMAs. The above studies suggested that

the variation in mechanical response stems from the

nucleation of energetically favorable martensitic

variants to applied loadings. However, most of the

above studies focused on experimental stress–strain

curves with little focus on underlying MTs.

The controlled experiments in SMAs are complex

because of required simultaneous control of stress and

deformation in time and space. In addition, the multi-

axial experimental setups are expensive and time

consuming. Hence, models have been developed to

predict the properties of SMA structures for design and

optimization. Several modeling approaches have been

developed to predict the SMA properties. The majority

of the models in the literature focused on uniaxial

tensile test data. Extensive reviews of such models for

SMAs have been discussed in [8–10, 27–29]. With the

need of predicting multi-axial properties of SMAs for

advanced technological applications, there has been an

increasing focus on the development of multi-axial

models [30–35]. Tokuda et al. [30] proposed a two

dimensional micromechanical model based on crystal

plasticity and the deformation gradient to describe

thermo-mechanical behavior in polycrystalline Cu-

based SMAs subjected to multi-axial loadings. Bouvet

et al. [31] presented a phenomenological model taking

into account tension-compression asymmetry for pre-

dicting pseudoelastic behavior of SMAs under multi-

axial loadings using two phase transformations sur-

faces. Thiebaud et al. [32] used a phenomenological

model developed by Raniecki et al. [36] to simulate

internal loops in order to characterize the stiffness and

the damping effect by an equivalent complex Youngs

modulus approach under static strain offsets. A rate-

independent crystal mechanics based model developed

by Pan et al. [33] is used to quantitatively predict the

experimental response of the NiTi rod under tension–

torsion loading conditions. Arghavani et al. [34]

presented a phenomenological model, based on the

framework of irreversible thermodynamics, that uses

stress-induced martensite as scalar internal variable

and the preferred direction of the variants as indepen-

dent tensorial internal variable to predict the experi-

mentally observed SMA behavior subjected to multi-

axial loadings. Recently, Saleeb et al. [35] proposed a

fully general three dimensional SMA model, based on

partitioning of the stored and dissipated mechanical

energies by utilizing the notion of multiplicity of

inelastic mechanisms, to capture numerous uniaxial

and multi-axial experimental responses of SMA

material. All the above studies indicate the importance

of multi-axial loadings on the SMA properties.

We are interested here specifically in the phase-

field (PF) models that have emerged as a powerful

computational approach for modeling microstructures

and mechanical properties of solid-to-solid phase

transformations in SMAs [37–47]. This approach

provides a unified framework that allows to describe

stress and temperature induced phase transformations,

including their dynamics in the variational setting. The

PF models have been used to study microstructure and

mechanical properties of meso- and nano-scale SMA

specimens. Bouville and Ahluwalia [45] used the PF

model with the Ginzburg–Landau free energy to study

the microstructure in constrained nanostructures and

mechanical properties of infinite length nanowires

1562 Meccanica (2014) 49:1561–1575

123



subjected to axial loading. They observed size depen-

dent properties and size effects in nanostructures.

Ahluwalia et al. [43] carried out the three dimensional

simulations to study the axial properties of nanosize

samples with periodic boundary conditions for the

cubic-to-tetragonal phase transformations in the FePd

crystals. They investigated changes in the stress–strain

behavior as a function of strain rate. Idesman et al. [48]

studied the evolution of microstructures in periodic

nanosized three dimensional NiAl samples using the

advanced potential developed by Levitas and Preston

[42]. Although SMAs possess strong temperature

dependent properties [10], most of the above studies

were carried out under the assumption of isothermal

conditions. In the series of papers by Melnik and

coworkers [38, 39, 49–53] a coupled thermo-mechan-

ical PF models have been used to study the dynamics

of SMAs based on the Ginzburg–Landau free energy.

Nevertheless, most of the studies focused on the

mechanical behavior of SMA structures under uniaxial

loadings only. However, as mentioned above, impor-

tant applications exist where the SMA structure may

induce multi-axial loading during interactions with its

environment.

In this paper, the objective is to study the properties

of finite length nanowires with a fully coupled non-

linear thermo-mechanical formulation under multi-

axial loadings. We use the mesoscale PF model

developed in our earlier work [54, 55] to study the

SMA dynamics based on the Ginzburg–Landau free

energy of 2D square-to-rectangular phase transforma-

tions. The details of size dependent properties and size

effects in SMA nanostructures using the developed

coupled thermo-mechanical model have been dis-

cussed in Dhote et al. [53]. In Dhote et al. [56], we

performed the first fully coupled thermo-mechanical

multi-axial loadings experiments on finite length SMA

nanowires using the PF model in the dynamic setting

and presented preliminary studies on the behavior of

SMA nanowire initially in twinned microstructure.

Here, we carry out a detailed study and conduct series

of complex multi-axial numerical experiments to

understand the microstructure evolution and its impact

on stress–strain properties of SMA nanowires initially

in twinned and austenite phases.

The rest of the paper is organized as follows. In

Sect. 2, we present a general mathematical framework

for modeling the SMA dynamics for 2D square-to-

rectangular phase transformations. We conduct a

series of numerical experiments with different multi-

axial loading conditions on SMA nanowires. In Sect.

3, we investigate the effect of microstructure on the

thermo-mechanical behavior of SMAs upon multi-

axial loadings. Finally, Sect. 4 summarizes the results

and discusses the scope for future work.

2 SMA dynamics

The mathematical model to study the SMA dynamics

is based on a mesoscale model analyzed in detail

numerically in our earlier works [53, 55]. In this work,

our focus is on the thermo-mechanical behavior of

FePd nanowires subjected to multi-axial loadings

based on microstructure evolution. The FePd material

has a high temperature, high-symmetry face centered

cubic (FCC) austenite phase, as well as low temper-

ature, low-symmetry face-centered tetragonal (FCT)

martensitic phases (with tetragonal crystal aligned

with elongated side along three rectilinear directions).

The material exhibits cubic-to-tetragonal martensitic

phase transformations under thermal and mechanical

loadings. The martensitic phase transformation is a

highly nonlinear phenomenon. In addition, the cou-

pled thermo-mechanical model and three dimensional

simulations make computations challenging [39, 50].

To make the computation tractable, we study the

MTs using the simplified 2D square-to-rectangular

representative phase transformations under the

assumption that the deformation in the out-of-plane

direction is constant. The effect of the third direction

deformation on microstructure evolution has been

reported elsewhere with the 3D dynamic thermo-

mechanical phase-field models [57, 58]. However,

here we focus on the 2D square-to-rectangular phase

transformations in SMAs, where the square represents

the austenite phase A and the rectangles represent the

martensitic variants Mþ and M� (with rectangle

length aligned along two perpendicular axes). As the

austenite and martensite variants have different ener-

gies and prevail at different temperatures, the phase

transformations in SMA can be modeled by using the

Ginzburg–Landau free energy [52, 54].

As per Falk [59], strains in the domain can be used

to describe different phases in the domain. The strain

components which directly contribute to PT are called

order-parameters (ops), and the others are called non-

OPs (nop). For square-to-rectangular PT, the
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deviatoric strain e2 serves as an OP. The free energyF

of PT is described as

F ¼Fop þFnop þFgradient; ð1Þ

where Fop is the energy part due to the OPs, which

contributes to MT as per the Landau–Devonshire

theory, Fnop is the energy part due to non-OPs, which

contributes to the bulk and shear energy, and Fgradient

is the energy part which contributes to the energy cost

required to maintain different domain phases in a

domain and interface formed between physical bound-

aries and domain. The gradient energy term (or the

Ginzburg energy) maintains a non-zero width in

austenite-martensite and martensite-martensite inter-

faces, and prevents the system from creating an

infinite number of interfaces (e.g. [60]). The gradient

term introduces a nano length scale width of a domain

wall in the model ([41, 43] and references within). As a

result, the Landau–Ginzburg theory has been applied

to nanoferroelastic and nanoferroelectric systems to

study the dynamic behavior of nanostructures [45, 61].

The free energy components in (1) for 2D square-

to-rectangular PTs are defined as

Fop ¼
a2

2

h� hm

hm

� �
e2

2 �
a4

4
e4

2 þ
a6

6
e6

2;

Fnop ¼
a1

2
e2

1 þ
a3

2
e2

3;

Fgradient ¼
kg

2

oe2

ox1

� �2

þ oe2

ox2

� �2
" #

;

ð2Þ

where e1; e2 and e3 are the hydrostatic, deviatoric and

shear strain respectively defined as e1 ¼ �xx þ �yy

� �
=ffiffiffi

2
p

; e2 ¼ �xx � �yy

� �
=
ffiffiffi
2
p

; e3 ¼ �xy þ �yx

� �
=2; with

�ij ¼ oui=oxj

� �
þ ouj=oxi

� �� �
=2 being the Cauchy–

Lagrange infinitesimal strain tensor; ui; i ¼ 1; 2 are

displacements along x1 and x2 directions, respectively

(refer to Fig. 2) , h is the material temperature, hm is the

austenite-martensite phase transformation tempera-

ture, ai are the material constants, and kg is the

Ginzburg coefficient. As the maximum strain induced

in the domain is � 3 % (refer to Table 1), a geometric

linear kinematic (infinitesimal) relationship is a simple

and convenient assumption. The influence of large

strain (geometric non-linear) definition (large strain

and material rotation) in the model and its effect on the

phase transformations, due to finite rotation, have been

highlighted by Clayton and Knap [62], Hildebrand and

Miehe [63], Levin et al. [64] and in references [65, 66].

As discussed above, the deviatoric strain e2 is

selected as the order parameter to distinguish different

phases in a domain. The austenite phase exists when

strains in both directions are equal i.e. e2 ¼ 0

(ou1=ox1 ¼ ou2=ox2). The martensite variants Mþ
exist when the strain in x1 direction is greater than

strain in x2 direction i.e. e2 [ 0 (ou1=ox1 [ ou2=ox2),

and the martensite variant M� exist when the strain in

x2 direction is greater than strain in x1 direction i.e.

e2\0 (ou1=ox1\ou2=ox2). With the free energy

given by (1), the SMA behavior is captured by the

mathematical model that couples the structural and

thermal fields using the conservation equations of

mass, momentum, and energy in the way described

previously in Melnik et al. [49].

The governing equations of SMA dynamics are

obtained by minimizing the total energy in a domain.

The kinetic energy K, and the dissipation functional

R are given by

KðtÞ ¼ q
2

v2
i ; and Rðui; tÞ ¼

g
2

_u2
i;j; ð3Þ

where q is the mass density, g is the dissipation

coefficient, við¼ _uiÞ is the velocity in the ith direction,

and _ui;j refers to the differentiation of velocity ui in j

direction, with i; j ¼ 1; 2 respectively.

The Lagrangian L and the Hamiltonian H of the

system are defined as

L ¼KðtÞ �F�Rðui; tÞ; ð4Þ

H ¼
Z t

0

Z
X

L� fiuið ÞdXdt; ð5Þ

where fi are the mechanical loadings in the ith

direction, X is the SMA domain, and ½0; t� is the time

span.

Table 1 Numerical experiments—multi-axial loading patterns

Set

no.

Expt.

no.

Axial Bending

vað%Þ tsa

(ns)

tla
(ns)

vbð%Þ tsb

(ns)

tlb
(ns)

I 1 3 0 1 0 0 0

2 0 0 0 3 0 1

3 3 0 1 3 0 1

II 4 3 0 1 3 1/8 1/6

5 3 0 1 3 1/5 1/4

6 3 0 1 3/2 1/5 1/4
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Using the Hamiltonian principle, the structural (or

mechanical) dynamics equations are obtained as

q
o2ui

ot2
¼
X orij

oxj

þ rgi
þ gr2vi þ fi; ð6Þ

where rij ¼ o=o�ij Fop þFnop

� �
, and rgi

¼ o=o�ij

ðFgÞ [53]. On simplification, we obtain the stress

tensor components as

r11 ¼
1ffiffiffi
2
p a1e1 þ a2

h� hm

hm

� �
e2 � a4e3

2 þ a6e5
2

	 

;

ð7Þ

r12 ¼
1

2
a3e3; ð8Þ

r21 ¼ r12; ð9Þ

r22 ¼
1ffiffiffi
2
p a1e1 � a2

h� hm

hm

� �
e2 þ a4e3

2 � a6e5
2

	 

;

ð10Þ

and the rgi
components are

rg1
¼ kg �

o4u1

ox4
1

� o4u1

ox2
1ox2

2

þ o4u2

ox3
1ox2

þ o4u2

ox1ox3
2

	 

;

ð11Þ

rg2
¼ kg

o4u1

ox3
1ox2

þ o4u1

ox1ox3
2

� o4u2

ox2
1ox2

2

� o4u2

ox4
2

	 

: ð12Þ

Equations (7–10) define the material behavior in

square-to-rectangular PTs. The fourth order terms in

(11–12) are the extra stress terms which correspond to

the strain gradient terms in the free energy F, and

represent the domain walls between different phases

of the martensites.

The governing equation of the thermal field is

obtained by the conservation laws of internal energy

[49] as

q
oe

ot
� rT : rvþr � q ¼ g; ð13Þ

where q ¼ �jrh is the Fourier heat flux vector (as

mentioned in Melnik et al. [39], the hyperbolic

Cattaneo-Vernotte law may be more appropriate in

some cases), j is the heat conductance coefficient of

the material, and g is the thermal loading. The internal

energy is connected with the potential energy con-

structed above via the Helmholtz free energy W as

e ¼ Wðh; eÞ � h
oWðh; eÞ

oh
;

Wðh; eÞ ¼F� Cvhlnh;
ð14Þ

where Cv is the specific heat of a material.

On substituting (14) in the (13), the governing

equation of the thermal field in two dimensions can be

given as

qCv

oh
ot
¼ j

o2h
ox2
þ o2h

oy2

� �
þ a2

h
hm

e2

oe2

ot
þ g: ð15Þ

The second term on the right hand side of (15) is a

non-linear term, which couples temperature, defor-

mation gradient (strain), and rate of deformation

gradient (strain rate). Hence the overall system of

(6) and (15) describes the non-linear thermo-

mechanical coupled behavior of SMAs via h; e2,

and _e2.

In Dhote et al. [53], we used (6) and (15) to study

the behavior of SMA nanostructures of different

sizes. We also captured the martensitic transforma-

tion suppression phenomenon and size dependent

properties observed experimentally and numerically

(see e.g., [45, 67]) by using the developed thermo-

mechanical model. We also conducted the uniaxial

loadings on the nanowire under the assumption of

isothermal conditions. The results were in qualita-

tive agreement with the results obtained from

uncoupled models (e.g. [45]). We also obtained

qualitative agreement in temperature evolution dur-

ing dynamic loading and unloading of the SMA

specimen with the experimental work conducted by

Gadaj et al. [68] and Pieczyska et al. [69, 70] using

the developed thermo-mechanical model. In Dhote

et al. [56], we carried out the preliminary studies of

nanowire behavior subjected to multi-axial loadings

with nanowire initially in twinned martensitic phase.

We extend the study here with additional complex

multi-axial loading experiments starting with nano-

wire initially in twinned phase and a new set of

simulations starting with nanowire in austenite

phase. In the remainder of this paper, we focus on

the results of numerical simulations of SMA nano-

wires subjected to multi-axial loadings. Before we

proceed, we remark that currently our model does

not account explicitly for surface effects [71],

however the developed framework can be easily

extended to incorporate them.

Meccanica (2014) 49:1561–1575 1565

123



3 Numerical simulations

The Eqs. (6) and (15) are rescaled in the spatio-

temporal domain for numerical convenience and

solved numerically using the finite element method.

We have implemented the equations in the Comsol

Multi-physics software [72] by first splitting the fourth

order differential terms into two second order differ-

ential terms. As the experimental studies of dynamic

multi-axial behaviors in SMA nanowires are not

available in the literature, we validate the model at

different stages as described in the following sections.

We first verify the developed model and its numerical

implementation using a test problem [73]. A unit

square plate insulated and constrained in the normal

directions on the three edges, and subjected to sudden

unit heating on the fourth edge as schematically

depicted in Fig. 1a. We reduce the system of (6) and

(15) to the homogeneous thermo-elastic equations [74]

under the following assumptions:

– the unit square plate is in plane strain condition,

– the higher power strain terms a4 and a6, account-

ing for the phase transformations, are neglected,

– the phase transformation is homogeneous i.e. the

Ginzburg term kg is neglected, and

(a)

(c) (d)

(b)

Fig. 1 Comparison of dimensionless numerical and analytical results [73] for a test problem on a unit square plate
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– the second term on the right hand side of (15) is

neglected.

The resulting equations are solved numerically, as

mentioned above, and the dimensionless results are

compared with the analytical solutions in Park and

Banerjee [73]. The dimensionless temperature h, stress

r11, and displacement u2 profiles at the points A, B,

and C, respectively in Fig. 1 are in agreement with the

analytical homogeneous solutions of thermo-elastic-

ity. We also solved the non-homogeneous system of

equations with dynamic thermo-mechanical coupling.

The results are in qualitative agreement with exper-

imental and numerical results as described in detail in

the subsequent sections.

Next, we perform the numerical experiments on

rectangular domain (X) nanowires of dimension

1000� 200 nm with sides parallel to 10h i and 01h i
directions defined with reference to the austenite phase

as shown in Fig. 2a. The FePd material parameters

used for the simulations are (see e.g., [45]):

a1 ¼ 140 GPa, a3 ¼ 280 GPa, a2 ¼ 212 GPa, a4 ¼
17� 103 GPa, a6 ¼ 30� 106 GPa, hm ¼ 265 K, g ¼
0:025 Nsm�2, kg ¼ 3:5� 10�8 N, Cv ¼ 350 Jkg�1

K�1, and j¼ 78 Wm�1K�1.

3.1 Microstructure evolution

The series of numerical simulations have been

conducted to study the response of the nanowire to

multi-axial loadings. The nanowires are subjected to

different temperatures hinit for sufficiently long time to

evolve into the twinned [56] and austenite phases. The

strategy adopted here is to first evolve the

microstructure in the domain and then use the evolved

microstructure as an initial condition in the multi-axial

loading simulations.

The boundary and initial conditions used during

microstructure evolutions are

uijðoX;tÞ ¼ 0; rui � njðoX;tÞ ¼ 0; rh � njðoX;tÞ ¼ 0;

hjðX;t¼0Þ ¼ hinitK; uijðX;t¼0Þ ¼ white noise; ð16Þ

where n is the normal vector to the boundary. During

microstructure evolution, the mechanical boundary

conditions are set to u = 0 on all the boundaries. All the

simulations in the paper have been conducted under

the assumption of adiabatic temperature conditions on

all the boundaries. The simulations have been per-

formed on the finite domain size with constrained or

stress-free boundary conditions. The nanowire is set to

the initial temperature hinit ¼ 250K; and 270 K to

evolve into the twinned, and austenite phases

respectively.

The microstructures are allowed to evolve till it gets

stabilized over a long simulation time. The evolved

microstructures is shown in Fig. 3. The red and blue

colors represent the Mþ and M� martensitic variants

and the green color represents the A phase. Figure 3a

shows the evolved twinned martensite phase, and Fig.

3b shows the evolved austenite phase. The evolved

microstructure in twinned martensite is self-accom-

modated and forms domain walls oriented in f11g or

f�11g planes to minimize the energy [75–77]. During

the microstructure evolution, the temperature increase

is observed due to the insulated boundary conditions

and thermo-mechanical coupling between tempera-

ture h, strain e2, and strain rate _e2.

(a) (b)

∂Ω

Ω

Fig. 2 Schematic indicating a direction, plane, and boundary (oX) nomenclature in the nanowire domain (X) and loadings during

multi-axial loadings [56], and b displacement based ramp loading and unloading
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3.2 Multi-axial loading

We now perform the multi-axial loading simulations

on the evolved microstructure from the previous

subsection. We consider the evolved microstructure

as an initial condition to the loading experiments. In

order to investigate the response of the nanowire to

different loading patterns, we carried out a series of

numerical experiments as described in Table 1. The

simple experiments with axial (experiment 1) and

bending (experiment 2) loads have been first con-

ducted and the response of nanowire has been

compared with multi-axial loadings (experiment 3,

i.e. axial and bending loads applied simultaneously).

Next, different patterns of multi-axial loadings have

been applied to study the nanowire response to

complex loadings. The initial and boundary conditions

for all the simulations are:

uijðoX¼1;tÞ ¼ 0; rui � njðoX;tÞ ¼ 0; rh � njðoX;tÞ ¼ 0

ð17Þ

and the loading conditions for different loading cases

are

Axial :u1jðoX¼4;tÞ ¼ da;

Bending :u2jðoX¼4;tÞ ¼ db;

Multi� axial :u1jðoX¼4;tÞ ¼ da; 2 jðoX¼4;tÞ ¼ db;

ð18Þ

where da and db are the ramp displacement based

loading and unloading with axial va and bending vb

displacements, respectively, as shown in Fig. 2b. The

expressions for ramp displacement based loading and

unloading are

da ¼ va tla � jðt � tsaÞ � tlaj½ � tla

tla � tsa

� �
;

db ¼ vb tlb � jðt � tsbÞ � tlbj½ � tlb

tlb � tsb

� �
;

ð19Þ

where tsa and tsb are the start of loading times, tla and

tlb are the loading times to reach va and vb

displacements for axial and bending loadings respec-

tively. Next, we conducted the numerical experiments

on the evolved nanowire in twinned martensite and

austenite from the previous section.

3.2.1 Nanowire with twinned microstructure

as an initial condition

Here, we first present the results of first three

experiments in Table 1 reported in [56] for the sake

of completeness and then discuss the complex multi-

axial loading experiments carried out additionally to

understand the dynamic thermo-mechanical properties

of SMA nanowires.

The nanowire with evolved twinned microstruc-

ture, as shown in Fig. 3a, is used as an initial condition

for the multi-axial loading experiments. The nanowire

is loaded in the axial (experiment 1), bending (exper-

iment 2), and multi-axial (experiment 3) directions as

mentioned in Table 1. The simulations are performed

for each loading case individually. We presented the

results of the above three experiments in Dhote et al.

[56]. In axial loading, the twinned microstructure is

converted to a favorable martensitic phase (Mþ) to the

axial loading via a process of detwinning, as also

reported experimentally [78]. The elastic loading and

phase transformations occur simultaneously. In the

case of bending load, the phase transformations occur

in a localized area and the redistribution of martensitic

domains has been observed. The redistribution of

martensitic domains is governed by the local axial

stress sign. The phenomenon of redistribution of

martensite has also been experimentally reported by

Rejzner et al. [79] in Cu- based SMAs subjected to

pure bending. In the multi-axial case (experiment 3),

the mixed behavior of elastic loading, detwinning, and

redistribution of martensitic domains is observed. The

simultaneous occurrence of these phenomena affects

the mechanical properties of SMA nanowires.

The microstructures evolution has been quantita-

tively studied by comparing the normalized area of

(a) (b)

Fig. 3 (Color online) Evolution of a twinned [56], and b austenite microstructure in the nanowire (red and blue indicates martensite

variants and green indicates austenite)
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different phases in the domain by defining the

parameter Âh as

Âh ¼
Area of martensite or austenite phase

Area of the nanowire
; ð20Þ

where h refer to Mþ and M� variants and A phase.

Figure 4a shows the evolution of Âh for the three

loading cases mentioned above. The observations of

elastic loadings, phase transformations, and redistri-

bution of martensites under different loading condi-

tions has also been predicted from the Fig. 4a.

The axial stress–strain behavior of nanowires for

the axial (experiment 1) and multi-axial (experiment

3) case (refer to solid and dotted lines) is shown in Fig.

5a. In the multi-axial loading case, the shear strains are

non-zero and are coupled with the axial components of

deformation. The stress–strain characteristics of nano-

wire under multi-axial loadings are quite distinct as

compared to the uniaxial loading and the particular

stress level is reached at a lower strain. The existing

variants lead to higher stresses due to a higher energy

state of multi-axial loading. The temperature evolu-

tion for different loading cases (refer to the solid lines)

is shown in Fig. 5b. The increase and decrease of

temperature upon loading and unloading has been

verified experimentally by the works of Gadaj et al.

[68] and Pieczyska et al. [69, 70]. The temperature

increase in the bending case is not steep as compared

to the axial case because the variants are redistributed

in a domain.

The above experiments provide insight into the

response of nanowire subjected to dynamic axial,

bending, and multi-axial loadings. Further new sets of

simulations have been carried out with complex multi-

axial loading patterns to study nanowire response. The

nanowires have been subjected to different complex

multi-axial loading cases—experiments 4, 5, and 6

(refer to Table 1). These experiments refer to the

application of bending loads with different

vb; tsb
; tlb .The time-snapshots of microstructure evolu-

tion for three multi-axial experiments are shown in

Fig. 6a–c. It is observed that the dynamics of loading

causes the evolution of microstructures in different

patterns. The axial stress–strain curves for three

experiments are shown in Fig. 7a. A significant

difference in response of nanowires to dynamic

loadings is evident from the variation in stress–strain

curves for complex loading cases. The sudden appli-

cation of bending load causes increased (sudden jump

in) axial stiffness of the nanowire, which reduce

subsequently as the deformation wave travels and the

load is distributed in the whole domain. The combi-

nation of magnitude of vb and its loading–unloading

duration tsb
; tlb would dictate the dynamics of elastic

(a) (b)

Fig. 4 (Color online) Evolution of Âh with time starting from

initial a twinned martensite and b austenite conditions for

different loading cases: axial (red), bending (black), and multi-

axial (blue) (solid lines represent ÂMþ, dash lines represent

ÂM�, and dotted line represent ÂA).
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loading, phase transformation, and redistribution of

martesitic domains. The combined effect of these

phenomena is evident from the waviness in Âh in

Fig. 7b as compared to the microstructure evolution in

simple multi-axial experiment (experiment 3) in

Fig. 4b. The effect of complex loading characteristics

on temperature evolution dynamics is apparent from

Fig. 7c.

3.2.2 Nanowire with austenite microstructure

as an initial condition

We also conducted the numerical simulations with

nanowire in the austenite phase. The microstructure

evolution during the axial (experiment 1), bending

(experiment 2), and multi-axial (experiment 3) load-

ings are presented in Fig. 8(a–c). It is observed that the

(a) (b)

Fig. 5 (Color online) Average a axial stress–strain and

b temperature evolution for different loading cases: axial

(red), bending (black), and multi-axial (blue) for nanowire

initially in a twinned phase (solid lines) [56], and b austenite

phase (dashed line). The dotted line in a represents unloading of

the twinned phase

(a) (b) (c)

Fig. 6 (Color online) Evolution of microstructure in the

(twinned phase) nanowire subjected to multi-axial loading and

unloading in a experiment 4, b experiment 5, and c experiment 6

at time (ns) (i) 0.25, (ii) 0.375, (iii) 0.5, (iv) 1.0, (v) 1.5, and (vi)

2.0 (red and blue indicate martensite variants and green

indicates austenite)

1570 Meccanica (2014) 49:1561–1575

123



nanowire in austenite phase is transformed into the

favorable martensite upon loadings. This transforma-

tion from austenite phase to favorable martensites, via

a movement of the habit plane in a nanowire domain,

is different from the detwinning transformation

described in Sect. 3.2.1. The movement of habit plane

is also interpreted from phase change from ÂA ! ÂMþ

with traces of ÂM� during loading as shown in Fig. 4b.

An important note to make here is that the ÂA has

significant presence in the domain at the end of

unloading. The axial stress–strain behavior of nano-

wire for axial and multi-axial experiments are shown

in the Fig. 5a (refer to the dashed lines). The stiffness

of the nanowire in austenite phase is greater than in the

twinned martensite phase, which is also experimen-

tally observed in SMAs [10, 12]. The stress–strain

characteristics of nanowire upon multi-axial loadings

are also quite distinct than in the case of the uniaxial

loading, and the particular stress level is reached at a

lower strain. The evolution of temperature in the

nanowire is shown in Fig. 5a (refer to the dashed

lines). The microstructure evolution is in qualitative

agreement with the axial and bending loading exper-

iments on the NiTi tube [80].

Further, we carried out multi-axial loadings on

SMA nanowires with different loading conditions

described in experiments 4–6 in Table 1. The time

snapshots of microstructure evolution are presented in

Fig. 9. The evolution of microstructure distribution Âh

indicate the dynamics of phase transformations due to

complex loadings, as shown in Fig. 10b, and its effect

on the evolution of axial stress–strain behavior, and

(a) (b) (c)

Fig. 7 (Color online) Evolution of a average axial stress–strain and b Âh, and c temperature over time for experiment 4 (red), 5 (black),

and 6 (blue) for nanowire initially in the twinned phase

(a) (b) (c)

Fig. 8 (Color online) Evolution of microstructure in the

(austenite phase) nanowire subjected to a axial (experiment

1), b bending (experiment 2), and c multi-axial (experiment 3)

loading and unloading at time (ns) (i) 0.25, (ii) 0.5, (iii) 1.0, (iv)

1.5, and (v) 2.0 (red and blue indicate martensite variants and

green indicates austenite)
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temperature as shown in Fig. 10a, c, respectively. A

strong influence of complex multi-axial loading is

observed on the dynamics of elastic loading, phase

transformation, and redistribution of martesitic

domains in SMA nanowire domains. The complex

multi-axial loading induces complex thermo-mechan-

ical behaviors in SMA nanowire.

4 Conclusions

We analyzed in detail the thermo-mechanical behavior

of FePd nanowires under complex multi-axial loading

conditions. The phase-field model with the Ginzburg–

Landau free energy was used to model the square-to-

rectangular phase transformations. The simulations

were carried out accounting for the coupled thermo-

mechanical physics. The numerical results revealed

that the axial loading is dominated by the detwinning

phase transformation, while the bending case by the

redistribution of martensitic variants based on the

local axial stress sign. The multi-axial behavior of

nanowires is quite distinct as compared to the uniaxial

loading due to the combined dynamics of elastic

loading, phase transformations, and redistribution of

the martensitic variants, with particular stress reaching

at a lower strain. The multi-axial loading character-

istics causes complex thermo-mechanical behavior of

SMA nanostructures. The results of multi-axial

behaviors are important in developing better SMA

(a) (b) (c)

Fig. 9 (Color online) Evolution of microstructure in the

(austenite phase) nanowire subjected to multi-axial loading

and unloading in a experiment 4, b experiment 5, and

c experiment 6 at time (ns) (i) 0.25, (ii) 0.375, (iii) 0.5, (iv)

1.0, (v) 1.5, and (vi) 2.0 (red and blue indicate martensite

variants and green indicates austenite)

(a) (b) (c)

Fig. 10 (Color online) Evolution of a average axial stress–strain and b Âh, and c temperature over time for experiment 4 (red), 5

(black), and experiment 6 (blue) for nanowire initially in the austenite phase
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nanowire based actuators, sensors, as well as in control

of MEMS and NEMS devices.

Although the simulations enhanced our understand-

ing of microstructure evolution and its effect on

response of the material subjected to dynamic multi-

axial loading, there are current limitations in the

temporal domain due to model rescaling. Further

studies with different boundary conditions and 3D

models [81] will provide further insight into the

nanowire response to multi-axial loading dynamics.
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