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A B S T R A C T

Lead-free piezocomposites are an ecofriendly route for sensing and harvesting energy from mechanical stimuli and it is important to develop accurate models which
can capture essential physical processes underlying their performance. Current piezocomposite design heavily relies on the linear piezoelectric model which neglects
nonlocal and nonlinear electro-elastic processes. Here we develop a more accurate modelling paradigm to determine the contributions from nonlocal flexoelectric
and nonlinear electrostrictive effects towards the performance of lead-free piezocomposites. We find that in the case of microscale randomly shaped piezoelectric
inclusions which represent a practical scenario, the flexoelectric effect does not contribute appreciably towards the piezoelectric response. However, the nonlinear
electrostrictive effects impart significant strain-dependent responses. Further, in nano-modified composites, we find that the nonlinear electro-mechanical coupling
can have different effects on the transverse and the longitudinal electro-elastic responses. In particular, the longitudinal electric field response, with the nonlinear
contribution, is less sensitive to the polycrystalline structure of the piezoelectric inclusions. These observations clearly indicate that at larger strains, nonlinear effects
cannot be neglected. In general, our results entail that it is important to include nonlocal and nonlinear processes for reliable and accurate modelling of
piezocomposites.

1. Introduction

Lead-free piezocomposites have drawn worldwide attention due to
the promise of an environmentally-friendly alternative to lead-based
materials for conversion of mechanical stimuli into electrical energy
[1,2]. With a clear goal of sustainable technology, at this point lead-free
materials lag behind lead-based materials in terms of their performance
[2]. The performance issues are typically addressed by tuning the me-
chanical [3,4], electrical [3–5], and crystalline structural properties
[4–7] of the matrix and the piezoelectric inclusions. This includes
tuning the hardness of the matrix for better coupling of applied strain to
the piezoelectric inclusions [3,4], using nanomaterials such as metal
nanoparticles, nanowires, and carbon nanotubes to tune the electrical
properties of the matrix to enable better conduction of generated
charges to external circuits [3–5], tuning the polycrystallinity of the
piezoelectric inclusions to maximize flux generation [4–7] and so on.
There have been several efforts to both model and experimentally de-
monstrate these design pathways. However, in the aspect of design,
most of these efforts overlook the contributions due to several im-
portant physical effects. These include nonlocal effects such as flex-
oelectricity and nonlinear effects such as electrostriction. Flexoelec-
tricity refers to the generation of electric flux from strain-gradients, as

opposed to flux generation from homogeneous strain which is described
by linear piezoelectricity [8–10]. Although flexoelectricity has been
explored in the context of a homogeneous material or simple structures
[8,11,12], the role of flexoelectricity in practical composite archi-
tectures remains to be better understood. Large strain gradients could
be expected in composite materials which have hard piezoelectric in-
clusions in relatively soft matrices and thus the flexoelectric effect could
be significant.

The second important electro-elastic process that needs to be con-
sidered is electrostriction. This is a nonlinear property of a material by
which strains are produced through a quadratic dependence on the
electric field [13,14]. A simplistic linear piezoelectric model would
predict that the effective strain-normalized response of a piezo-
composite (for example its effective eij coefficients) would be constant,
independent of the applied strain. However, nonlinear material beha-
vior could lead to strain-dependent effective material properties. Al-
though the constitutive material laws will not involve any nonlinear
(strain-dependent) coefficients, when one considers the dependence of
generated electric flux in relation to the applied strains, non-local and
electrostrictive processes can give rise to a strain-dependent apparent
material behavior. Quantifying both the contributions of the nonlocal
and the nonlinear effects, therefore, is an important agenda of this
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paper. We develop a fully coupled electro-elastic model, starting from
free-energy considerations, which simultaneously accounts for the
linear-piezoelectric, nonlinear and nonlocal effects in a lead-free com-
posite architecture. We first evaluate the contributions of each of these
effects towards the electro-elastic response of a two-component piezo-
composite consisting of a polymer matrix with embedded piezoelectric
micro-sized inclusions. Further, we also evaluate the contribution of
these effects in a three-component composite architecture consisting of
a CNT-modified matrix with polycrystalline piezoelectric inclusions.
The overall objective here is to provide a systematic analysis of the roles
and contexts under which the non-local and the nonlinear effects can
significantly influence the electro-elastic response.

2. Electro-elastic model, effective electro-elastic coefficients, and
boundary conditions

In this section, we will provide the details of the mathematical
models that describe the behavior of a piezoelectric composite (Section
2.1) and the boundary conditions used for the determination of the
effective electro-elastic coefficients of the composite (Section 2.2).
Section 2.2 also further defines the electro-elastic coefficients of prin-
cipal importance which are investigated in the subsequent sections.

2.1. Electro-elastic model accounting for nonlocal and nonlinear effects

The model developed here will include the effects of strain-gradient
electricity or flexoelectricity [10] and electrostriction which is a non-
linear dependence of strain on electric fields [14]. The couplings be-
tween the strains, strain-gradients, and electric fields, to capture all
these effects, are introduced in a free-energy density function. The
Gibbs free energy function which includes all these couplings is given as
follows [13,15–17]:

= − ∊ − − −G c ε ε E E e E ε B E E ε μ E ε1
2

1
2

1
2ijkl ij kl ij i j kij k ij klij k l ij ijkl i jk l, (1)

Here, cijkl, ∊ij, eijk, Bijkl, and μijkl are the elastic, permittivity,

piezoelectric, electrostrictive, and flexoelectric coefficients.
Additionally, the field variables include the strain tensor components
εij, the electric field components Ei and the strain-gradient components
εjk l, . The typical linear piezoelectric models discussed widely in the
literature would have only the first three terms on the right-hand side,
thus overlooking the nonlocal and nonlinear effects [18].

The phenomenological relations describing the behavior of the
composites are derived as follows from Eq (1):
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Here, σij, ̂σijk and Di are the stress tensor components, the higher
order stress tensor components, and electric flux density components,
respectively. These constitutive relations are further subjected to the
governing balance laws given by [8,11]:

̂− + =σ σ F( ) 0ij ijk k j i, , (5)

=D 0i i, (6)

where Fi represent the components of the body forces, which are as-
sumed to vanish in our model. The governing equations (Eqs. (5) and
(6)) subject to the phenomenological relationships (Eqs. (1) and (2)) are
solved using Finite Element Analysis. Also, the strains are related to the
displacement components ui as = +ε u u( )ij i j j i

1
2 , , and the electric field is

related to the electric potential as = −E Vi i, . The simulations are carried
out on 5 different Representative Volume Elements (RVEs) corre-
sponding to different inclusion volume fractions of BaTiO3, VBTO, as
shown in Fig. 1(a)–(e). We select = =a b μ50 mm m . The inclusions are
randomly shaped and are constrained within concentric circles of radii
R1 and R2 which are randomly selected within the ranges [2.5–3.5 µm]
and [4–5 µm], respectively.

Fig. 1. (a)–(e) Two dimensional RVEs studied in the current investigation with different volume fractions VBTO of BaTiO3 (dark random polygons) embedded in a
matrix with sides am and bm, (f) and (g) show the 2 boundary conditions BC1 and BC2, respectively, which are adopted for the current analysis.
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The material properties adopted for the simulations are summarized
in Table 1. For our investigation, we choose a PDMS matrix and poly-
crystalline BaTiO3 piezoelectric inclusions. We choose microscale pie-
zoelectric inclusions because this would allow grain sizes which lead to
optimal polycrystallinity and maximal piezoelectric response [6]. Note
that in the case of the flexoelectric coefficients, only the transverse and
longitudinal values are considered and these are written as μ11 and μ13.
These values are characterized on cubic BaTiO3 crystals, the symmetry
of which gives only three components – the longitudinal μ11, the
transverse μ13 and the shear μ44 components [19]. Since the shear
flexoelectric behavior of BaTiO3 is not well characterized [15], we in-
clude only the transverse and the longitudinal components in the
model. In our case, we have the longitudinal component and transverse
components μ11 and μ13 defined such that the flexoelectric polarization
components generated by strain gradients are given by

= +P μ ε μ ε1 11 11,1 13 33,1 and = +P μ ε μ ε3 13 11,3 11 33,3 [19].
Secondly, it is important to note that the coefficients of electro-

striction mentioned in the model Eqs. (1) and (2), i.e. Bijkl are different
from experimentally measured coefficients mentioned in Table 1. Ex-
perimentally measured values of electrostrictive coefficients can be
expressed in two forms – Qijkl, the electrostriction measured in terms of
the polarization density components Pi, and the Mijkl, the electrostric-
tion measured in terms of the electric field components Ei [20,21].
These are defined as follows [21]:

=ε Q P Pij ijkl k l (7a)

=ε M E E .ij ijkl k l (7b)

This means that the strain resulting from electrostriction can be
characterized either as a function of the polarization density compo-
nents Pi or the electric field components Ei. These two forms of re-
presentations are interconvertible as =M Q η ηijkl opkl oi pj [21], where the
tensor components ηij correspond to the dielectric susceptibility of the
material. Further, the coefficients Mijkl need to be converted to the form
required by the model (i.e. Bijkl) as =B c Mijkl ijpq pqkl [22]. Also, the
electrostrictive coefficients are measured on materials with cubic

symmetry or isotropy, which means that the only coefficients which are
non-zero are the longitudinal, transverse, and a shear component, si-
milar to the flexoelectric coefficients. The terms λm and μm in Table 1
refer to the Lame’s constants of the elastically isotropic matrix which
are given by = + −λm

E ν
ν ν(1 )(1 2 )

m m
m m

and = +μm
E

ν2(1 )
m

m
.

2.2. Electro-elastic coefficients of interest and boundary conditions

The system of coordinates along with the two sets of boundary
conditions applied here are shown in Fig. 1(f) and (g). The performance
of an electro-elastic composite is measured by its ability to simulta-
neously generate high electric flux and electric fields in response to
strain. In fact, the energy density in a piezoelectric material, under
strain, is maximized when both the flux and the electric field are
maximized [2,29]. Therefore, we define two effective parameters which
will measure these quantities. Using the notation ∗ for the volume
average of a quantity ∗, and the Voigt notation for the applied strain on
the boundary (refer to Fig. 1(f)–(g)), we define these parameters as
follows:

=p
D
εij

i

j (8a)

=ξ
E
εij

i

j (8b)

Here, the quantity pij corresponds to the volume average of the ith

component of the electric flux generated in response to the strain
component j in the Voigt notation, normalized by the volume averaged
strain. Similarly, the quantity ξij corresponds to the volume average of
the ith component of the electric field generated in response to the strain
component j. We will be investigating the components p p ξ, ,31 33 31 and
ξ33. For example, p31 is the volume averaged flux component D3 gen-
erated in response to the volume averaged strain ε1 (which in the usual
tensorial notation is ε11 ). Since these quantities are normalized by the
applied strain, these are effective electro-elastic parameters. If only
linear piezoelectricity is considered, then pij are the same as the effec-
tive piezoelectric coefficients eij. A different notation is used here to
emphasize that the effective coefficients include the nonlocal and
nonlinear contributions in addition to the linear piezoelectric con-
tribution. We also emphasize that conventionally effective coefficients
are constants that define the response of a material. However, the
presence of nonlinear and nonlocal effects in the model can make these
coefficients strain-dependent and identifying the nature of this depen-
dence is of particular interest in this paper. Further, we also look at the
parameter =η p ξij ij ij, which could be considered as a figure of merit
which measures both the effectiveness of flux and field generation, in
accordance with other studies seen in the literature [29]. In fact, this
parameter is representative of the energy density in the composite
under strain [4,29], and designs typically aim to maximize this quan-
tity. Note that the quantities p ξ, ,31 31 and η31 are evaluated using the
boundary BC1 and the quantities p ξ,33 33 and η33 are evaluated using the
boundary condition BC2. BC1 and BC2 are the standard boundary
conditions used for the evaluation of the effective piezoelectric coeffi-
cients e31 and e33, respectively, in traditional linear piezoelectric ana-
lysis [30–32]. In fact, the quantities p31 and p33 are more general de-
finitions which are equal to the quantities e31 and e33 in the absence of
nonlocal and nonlinear considerations. The general modeling paradigm
described in this section will be subject to the two-dimensional −x x1 3
axis system and the cubic symmetry (for inclusions) or isotropic sym-
metry (for matrix) of the flexoelectric coefficients, μ and the electro-
strictive coefficient tensors, Q and M. As mentioned earlier, the cubic
symmetry is invoked for the inclusions because of the availability of
clear experimental and computational data for this phase, where pie-
zoelectric effects can be ruled out. These simplifications and the re-
duced model equations which are used for the analysis are summarized
in appendix A1. Further, to the boundary conditions on the

Table 1
Electro-elastic material properties used in the simulations. Typical values of
electrostrictive coefficients are considered for the polymer matrix (The flexo-
electric coefficients given here are in the experimentally measured range, which
are orders of magnitude different from theoretical estimates. Simulations have
considered both values).

Material property Values for BaTiO3 Values for PDMS matrix

Elastic coefficients (Moduli in Pa)
c11 ×275.1 109 [23] +λ μ2m m
c13 ×151.55 109 λm

c33 ×164.8 109 +λ μ2m m
c44 ×54.3 109 μm
Young’s modulus, Em N.A. ×2 106 [24]
Poisson’s ratio, νm N.A. 0.499

Relative permittivity
∊ ∊11 0 1970 [23] 2.72 [24]
∊ ∊33 0 109 2.72

Piezoelectric coefficients (cm−2)
e15 21.3 [23] Matrix is non-piezoelectric
e31 − 2.69
e33 3.65

Flexoelectric coefficients (cm−1)
Longitudinal, μ11 × −1 10 6 [15,16,25] × −1 10 9 [26]
Transverse, μ12 × −1 10 6 [15,16,27] × −1 10 9

Shear, μ44 0 0

Electrostrictive coefficients, − −Q m C or M V m( ) ( )ijkl ijkl4 2 2 2

Longitudinal 0.1 m4 C−2 [28] − × −1 10 17 V−2 m2 [20]
Transverse −0.034 m4 C−2 0
Shear 0.29 m4 C−2 0
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displacement and the electric potential mentioned in Fig. 1(f)–(g), we
elaborate on the strain gradients on the boundaries in appendix A2.
Briefly, the boundary conditions adopted here will calculate flexo-
electric contributions only due spatial inhomogeneities in the compo-
site (due to the presence of two components). Flexoelectricity arising
from a deliberate external application of inhomogeneous strain or strain
gradients occurring due to geometrical anisotropies in the composite
architectures at larger scales are not considered here. The focus of this
work is to investigate and quantify the contributions of flexoelectricity
and electrostriction to the response of geometrically and composition-
ally homogeneous piezocomposites with microscale lead-free piezo-
electric inclusions.

3. Results and discussion

We discuss the results relating to the nonlocal and nonlinear con-
tributions. We do a step-by-step analysis. We start with the linear pie-
zoelectric model and introduce modifications sequentially starting with
the flexoelectricity followed by electrostriction. We finally look at the
role of electrostriction in nano-modified composites. We accordingly
split the discussion into three sub-sections corresponding to these sce-
narios.

3.1. Nonlocal flexoelectric contribution to the electro-elastic response

We begin by looking at the contribution of the flexoelectric effect
alone. For BaTiO3, experimentally measured values of the flexoelectric
coefficients are of the order of 1 × 10−6 C/m [15,16,25,27]. However,
theoretical predictions suggest much smaller values around
1 × 10−9 C/m [33]. We simulate the response of the composite for
both values of the flexoelectric coefficient. The results are plotted in
Fig. 2, for different inclusion concentrations VBTO. It is seen that con-
sidering the length scales of inclusion geometry, consisting of

microscale inclusions, the flexoelectric effect has negligible contribu-
tions both to the generated flux (Fig. 2(a)-(b)) and the electric fields
(Fig. 2(c)-(d)). This is not surprising, considering that the flexoelectric
effect is more sensitive at the nanoscale [19].

Also, a requirement for flexoelectric contributions to be significant
in a composite includes the presence of aligned inclusions having
geometric anisotropy [8], which is absent in the practical scenario such
as that considered here. Further, we have also considered the case
where we assume that these RVEs are spatially replicated to build a
macroscale structure which has no geometric anisotropy (by specifying
no explicit strain gradients – refer appendix A2). While it is known that
such geometric anisotropies can produce strain gradients and sig-
nificant flexoelectricity, we are interested in investigating the role of
flexoelectricity in a more practical setting of a homogeneous composite.
The randomness in the positions and shapes of the inclusions could
however result in a net anisotropy and hence a next flexoelectric effect.
However, at the length scales we have considered for this study, the
focus of which is restricted to random microscale inclusions which offer
the possibility of optimal polycrystallinity and grain size in the sub-
micron-micron scale [5,6] for best piezoelectric performance, we see
that flexoelectricity has a negligible effect.

3.2. Nonlinear electrostrictive contribution to the electro-elastic response

We next turn our attention to the nonlinear contribution to the
electro-elastic response. In particular, we expect to see strain-dependent
effective material coefficients as discussed in Section 2.2. Fig. 3 shows
the effective coefficients pij, ξij, and ηij for a representative example of
an RVE with the inclusion concentration VBTO = 43.1%. It is clear that
the nonlinear effects indeed lead to strain-dependent effective electro-
elastic material parameters. In the absence of nonlinear effects these
parameters would have been constants. The parameters pij and ξij in-
crease as the volume averaged strain increases, in both the cases of

Fig. 2. The effective coefficients for electric flux, p31 and p33 ((a) and (b), respectively), and for electric field, ξ31 and ξ33 ((c) and (d), respectively) obtained from the
standard linear piezoelectric model (no flexoelectricity) and the advanced model with flexoelectric considerations. Two sets of coefficients are considered, corre-
sponding to theoretical estimates ( = = × −μ μ 1 10inc inc

11 12
9) and experimental observations ( = = × −μ μ 1 10inc inc

11 12
6), to model the flexoelectricity of BaTiO3. The

superscript in μab
inc refers to the inclusion.
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applied stimuli. Therefore, the product ηij also increases as the strain
increases. This indicates that at larger strains, the composite archi-
tecture could exhibit significant nonlinear behaviour with strain-de-
pendent piezoelectric coefficients, which cannot be captured by the
linear piezoelectric model alone, as suggested by the plots in Fig. 3. This
further means that at larger strains, the nonlinear effects allow for more
efficient energy generation, which requires both high electric flux and
electric field. This clarifies that at larger strains, design considerations
must necessarily include the role of electrostriction.

In fact, we see that at higher strains, significant nonlinear con-
tributions are visible at the interfaces between the inclusions and the
matrix, as seen in Fig. 4. The generated electrical potential distributions
for the two boundary conditions BC1 (Fig. 4(a)-(b)) and BC2 (Fig. 4(c)-
(d)) are shown in Fig. 4, with subfigures (a) and (c) corresponding to
the predictions of linear piezoelectricity and subfigures (b) and (d)
corresponding to the prediction of the nonlinear electro-elastic model.
This is an example simulation, for the purposes of illustration, carried
out at relatively larger strains corresponding to =ε 0.111 and =ε 0.133 ,
for boundary conditions BC1 and BC2 respectively. Such strains could
also be practical in real-life applications such as in flexible devices. The
nonlinear model clearly shows that there is an increased electric po-
tential at the interface between the inclusions and the matrix, sug-
gesting an increased flux generation, due to electrostriction, within the
inclusions.

Further, it is important to understand the nature of the strain-de-
pendence exhibited by the effective material parameters. Fig. 5(a)-(b),
and (d)-(e) suggests that both the effective parameters pij and ξij show a
linear dependence on the applied boundary strain ε11 or ε33 (which is the
volume averaged strain in this case). Further, the first-order coefficient,
which determines the slope of the linear dependence, also increases
with an increase in the inclusion concentration, as shown in Fig. 5(c)
and (e) for the parameters pij and ξij, respectively. This inclusion-in-
duced intensification of nonlinear contributions to the electro-elastic
response suggests that the nonlinear contribution is significant through

the nonlinear behaviour of the BaTiO3 inclusions rather than that
through the matrix. Further, it is interesting to note that parameter ηij
also exhibits a linear dependence on the applied strain (Fig. 6(a) and (b)
corresponding to η31 and η33, respectively). Considering that ηij is the
product of two parameters having a linear dependence on strain, it is
natural to expect a quadratic dependence on strain for this parameter.
However, the second order contribution of strain to ηij is weak and
hence we observe a linear variation here also. This means that one
could expect a linear improvement in the energy density of a piezo-
electric harvester as the operating strain increases. As in the case of pij
and ξij, the first-order fit parameter for ηij also increases with an increase
in the inclusion concentration VBTO (Fig. 6(c)). It is further observed
from Figs. 5(c), (f) and 6(c), that the dependence of the first order fit
parameters a a, ,ij

p
ij
ξ and aij

η exhibit a cubic dependence on the inclusion
concentration VBTO. The details of the corresponding polynomial fits are
provided in the appendix A3.

3.3. Nonlinear electrostrictive contribution in nano-modified
piezocomposites

As highlighted earlier, an important aspect of piezoelectric com-
posite design is that of using nano-additives to the matrix to modify the
mechanical and electrical properties of the matrix for better piezo-
electric response. An important and well-known implementation of this
design aspect is that of using carbon nanotubes, which exhibit both very
high elastic coefficients and excellent electrical conductivity, as fillers
to simultaneously harden the matrix and increase its permittivity [3,4].
The hardening leads to better coupling of applied strain to the piezo-
electric inclusions and the increased matrix permittivity provides an
easy path for the generated electric flux to flow from the inclusion
through the matrix, which otherwise is a weak dielectric and thus
would impede the passage of flux. It is important to note that the ad-
dition of carbon nanotubes to a polymer matrix significantly increases
the electrostrictive behaviour of the matrix also [20,34], in addition to

Fig. 3. The effective electroelastic material coefficients, obtained by using boundary conditions BC1 ((a)–(c) corresponding to p ξ,31 31, and η31 respectively) and BC2
((d)–(f) corresponding to p ξ,33 33, and η33 respectively), evaluated with and without nonlinear electrostrictive effects. This is a representative example for
VBTO = 43.1%.
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the mechanical and the dielectric properties. The effective electro-
striction of such nano-modified matrices can be orders of magnitude
higher than the unmodified matrices. This means that it would be im-
portant to take into account the nonlinear contribution in nano-mod-
ified piezoelectric composites. We consider an example of a PDMS
matrix modified by (15,15) MWCNTs. The effective elastic properties of
the matrix are obtained using a two-parameter model as detailed in
[4,35]. The effective dielectric properties follow a percolation showing
a characteristic sudden rise in the permittivity near a critical MWCNT
concentration fCNT , called the percolation threshold [36,37]. This de-
pendence of the relative permittivity on fCNT is given by

⎜ ⎟∊ = ∊ ⎛
⎝ −

⎞
⎠

f
f f

,m
eff

m
c

c CNT

p

(9)

where fc is the percolation threshold, p is the critical exponent, and ∊m is
the relative permittivity of the pristine matrix.

The percolation threshold for a matrix with uniformly dispersed
CNTs, without agglomerations, is around 0.7 (for a nanotube aspect
ratio of roughly 100) [36] and the critical exponent p can vary between
0.8 [38] to 1.2 [39], with chemical functionalizing of nanotubes being a
proven way to tune these parameters [39]. Typical values of the ef-
fective electrostrictive coefficients are taken from the literature. Pris-
tine PDMS exhibits a longitudinal ( = =M M M1111 2222 3333) electro-
strictive coefficient of − × − −1 10 m V17 2 2 [20]. As carbon nanotubes
are added, the value of the coefficient grows while retaining the ne-
gative sign up to percolation [20]. For optimally designed matrices with
specialized multiscale microstructures having a network of CNT-filled
regions running through pristine PDMS, the electrostrictive coefficients
can escalate to values as high as − × − −1 10 m V12 2 2 [20]. However, we

consider a simpler architecture in which nanotubes are dispersed uni-
formly in the PDMS matrix, and hence we make a more conservative
estimate on the electrostrictive coefficient. We use a value of
− × − −1 10 m V15 2 2, based on experimental observations [40]. Taking
all these factors into account, we simulate the behavior of the compo-
site when the matrix is near CNT percolation. The percolation condition
is chosen as it is the typical experimental practice to have an electrically
well-connected matrix to allow easy passage of electric flux [3]. We
apply a boundary strain of = × −ε 5 1011

3or = × −ε 5 1033
3, corre-

sponding to the two boundary conditions discussed in Fig. 1(f)–(g),
considering a representative example of VBTO = 15.4%. We further
carry out these simulations as a function of the polycrystallinity of the
BaTiO3 inclusion. The polycrystallinity of the inclusion is also brought
into the design context here because it is seen that when the permit-
tivity of the matrix is enhanced, polycrystalline inclusions could exhibit
better piezoelectric response than the single-crystal-based design
counterparts [5]. The polycrystallinity is characterized by a parameter
α and the effective electroelastic coefficients of polycrystalline BaTiO3

are obtained by weighted orientation averaging as detailed in [23]. We
highlight here that very small values of →α α( 0) correspond to single
crystal-like behaviour and very large values → ∞α( ) correspond to
randomly oriented crystals which exhibit no net piezoelectricity [23].
We see from the Fig. 6 that electrostriction-induced nonlinearity has a
different kind of effect on the composite behavior than in the case
without nano-modification. First, we notice that the transverse beha-
vior is almost unchanged even in the presence of nonlinear contribu-
tions, indicating very small contributions from electrostriction in this
case. Both the transverse parameters, p31 and ξ31 exhibit a similar de-
pendence on the polycrystalline index α as seen from Fig. 7(a)-(b).
However, in the longitudinal case (Fig. 7(c)-(d)), the contributions of

Fig. 4. The electric potential distribution predicted, for an example with VBTO = 43.1% subject to boundary condition BC1 ((a)-(b)) and BC2 ((c)-(d)). (a) and (b)
show the predictions of linear piezoelectricity and (c) and (d) show that of the nonlinear model. In this illustrative example, we have set =ε 0.111 and =ε 0.133 for BC1
and BC2 respectively.
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the electrostrictive processes are significant. It is seen that the nonlinear
effects lead to a decrease of electric flux generation (p33), by roughly
18% and an increased electric field generation (ξ33), by around 24%.
These differences are quite significant and hence it is important to take
into account nonlinear effects while modelling nano-modified piezo-
electric composites. Another interesting observation is that with the
presence of nonlinear contributions, the electric field generated in the
composite (given by ξ33) shows a much weaker dependence on the
polycrystallinity of the BaTiO3 inclusions, and remains almost flat over
a considerable polycrystalline range (from =α 0to = −α 0.2 0.3). This
suggests that by choosing an optimum polycrystalline structure, it is
possible to maximise the electric flux generation without compromising
the electric field characteristics of a single crystal.

In conclusion, in the case of lead-free piezoelectric composites with
microscale polycrystalline BaTiO3 inclusions, although flexoelectric
effects do not contribute significantly to the response, the nonlinear
electrostrictive effects have an appreciable effect. Further, these effects
manifest in different ways in nano-modified composites and unmodified
composites, thus highlighting the importance of developing advanced
mathematical models, accounting for such effects, to accurately predict
and design efficient piezoelectric composites. At this point, to the best
of our knowledge, there is no experimental literature that evaluates the
role of all the three coupled effects discussed here – linear piezo-
electricity, flexoelectricity, and electrostriction – in a homogeneous
composite material. We, therefore, emphasize that these are first efforts
to build advanced models incorporating important electromechanical

Fig. 5. The linear fits to the calculated parameters (a) p31, (b) ξ31, (d) p33, and (e) ξ33, with the applied boundary strain (or volume averaged strain) ε11 or ε33 as the
independent variable, shown for VBTO = 43.1%. (c) and (f) show the variation of the first order coefficients of the fit as a function of the volume fraction VBTO of the
BaTiO3 inclusions.

Fig. 6. The linear fit for (a) η31 and (b) η33 as a function of applied strain, along with the simulated values, as a function of volume averaged strains/applied boundary
strains ∊jj , shown for VBTO = 43.1% (c) The variation of the first order fit coefficient aij

η as a function of the inclusion concentration VBTO.
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coupled effects, in an attempt to provide direction to design suitable
experiments.

4. Summary

We have developed a mathematical paradigm to model piezoelectric
composites by taking into account important physical effects such as
nonlocal flexoelectric and nonlinear electrostrictive effects. In the
composite architectures studied here, comprising of microscale piezo-
electric inclusions, flexoelectric effects do not contribute significantly.
However, the nonlinear contribution from electrostriction is significant.
This leads to emergence of nonlinear effective material parameters
characterizing the electric flux and the electric field, which show a
linearly increasing dependence on the applied strain. In its turn, this
suggests that at larger strains, the contribution to the piezoelectric re-
sponse due to electrostriction becomes more significant and needs to be
taken into consideration in the design. Secondly, the strain-dependence
of the effective material parameters characterizing the generated elec-
tric flux and fields intensifies with an increase in the inclusion con-
centration in the composite. This indicates that the nonlinear effects
stem predominantly due to the electrostriction within the inclusions
rather than in the matrix. Further, in the case of nano-modified com-
posites, comprising of a CNT-modified matrix with polycrystalline
piezoelectric inclusions, the electrostrictive effect affects the transverse
and the longitudinal electro-elastic response in different ways. While

the transverse behaviour is almost unchanged in the presence of the
nonlinear effects, the longitudinal behaviour sees a significant reduc-
tion in flux generation and a significant improvement in the electric
field generation. Additionally, the generated electric field is less sen-
sitive to the polycrystallinity of the inclusion, due to the nonlinear
behaviour. These observations provide critical insight into the non-
linear behaviour of piezocomposites and emphasize the importance of
developing advanced models to describe electro-elastic behavior.
Further, these models can also act as a starting point for the design of
efficient piezocomposites and directed experimental efforts to tap into
these coupled electromechanical effects to improve piezoelectric per-
formance.
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Appendices

A1: Phenomenological relations in two dimensions

Here we provide the details of the two-dimensional simplification of the model described in Section 2. Because of the cubic symmetry (of the
inclusions) or isotropy (of the matrix), a number of flexoelectric and electrostrictive coefficients are zero. This leads to a very simplified model which
is detailed below.

Fig. 7. The effective electric flux and electric field coefficients (a)-(b) p31 and ξ31, and (c)-(d) p33 and ξ33, as a function of the inclusion polycrystalline index α,
calculated with and without nonlinear contributions, for an RVE with VBTO = 15.4% at an applied strain of = × −ε 0.5 1011

2 (for (a)-(b)) and = × −ε 0.5 1033
2 (for (c)-

(d)).
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The phenomenological equations for the stress components in terms of the strain and the electric fields are

= + − − −σ c ε c ε e E B E B E1
2

1
211 11 11 13 33 31 3 1111 1

2
3311 3

2
SE(1a)

= + − − −σ c ε c ε e E B E B E1
2

1
233 13 11 33 33 33 3 1133 1

2
3333 3

2
SE(1b)

= − −σ c ε e E B E E2 1
213 44 13 15 1 1313 1 3 SE(1c)

The higher order stresses arising from flexoelectricity are given by (only non-zero terms listed)

̂ =σ μ E111 11 1 SE(2a)

̂ =σ μ E113 13 3 SE(2b)

̂ =σ μ E331 13 1 SE(2c)

̂ =σ μ E333 11 3 SE(2d)

The electric flux components are given by

= ∊ + + + + + +D E μ ε e ε μ ε B E ε B E ε B E ε2 21 11 1 11 11,1 15 13 13 33,1 1133 1 33 1111 1 11 1313 3 13 SE(3a)

= ∊ + + + + + + +D E e E e E μ ε μ ε B E ε B E ε B E ε23 33 3 31 1 33 3 13 11,3 11 33,3 3311 3 11 3333 3 33 3131 1 13 SE(3b)

Here = =μ μ μ1111 3333 11 is the longitudinal flexoelectric coefficient, and = =μ μ μ1331 3113 13 is the shear flexoelectric coefficient. The shear
flexoelectric coefficients are assumed to be zero because they are not well characterized experimentally [15]. The electrostrictive coefficients also
have similar longitudinal, transverse, and shear coefficients (Qijkl or Mijkl mentioned in Table 1). These should be further modified as described in
Section 2.1 to be used in the above equations as Bijkl. In general, the flexoelectric and electrostrictive data are available for the cubic phase of BaTiO3.
Therefore, there are only 3 independent coefficients – the longitudinal, the transverse, and the shear components as shown by the representative
matrix below:

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

X

X X X
X X X
X X X

X
X

X

X X X
X X X
X X X

X
X

X

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1111 1122 1133

2211 2222 2233

3311 3322 3333

1313

2323

1212

11 13 13

13 11 13

13 13 11

44

44

44 SE(4)

Note that in the above equation, X can either be the flexoelectric coefficient tensor μ, or the electrostrictive coefficient tensor Q or M . Note that
the electrostrictive coefficient suitable to the representation in Eqs. SE(1)–(3) is, however, different and the above matrix notation is not suitable to
represent it. This is because B is obtained by multiplication with material property tensors which are either anisotropic or non-cubic and thus the
above representation breaks down, and Bijkl notation has to be retained. Eqs. SE(1)–(3) are, as already mentioned in Section 2.1, subject to the
equilibrium and charge balance laws and appropriate boundary conditions, to obtain the required electro-elastic coefficients. For the matrix, we
assume that the transverse and the shear components are equal for both the flexoelectric and the electrostrictive coefficients.

A2: Strain gradients at the boundaries

We will here discuss about the strain gradient values at the boundaries of the RVE. We do not directly specify the strain gradients. The boundary
conditions BC1 and BC2 specify the displacement at the boundaries as seen from Fig. 1(f)–(g). As a result of the boundary conditions applied, the
strain gradients along the boundaries are determined to be zero in some cases, and in other cases, will be determined by the solution. The Table AT1
specifies which of the strain gradient components are decided by the applied boundary conditions (denoted by their determined value, 0) and which
of the components will be determined by the solution (denoted by “–”). The Fig. AF1 shows a reference RVE with the names of the boundaries that
will be described by Table AT1.

We particularly note that in the case of BC1, the volume of average of ε11,1 will be zero. Similarly, in the case of BC2, the volume average of ε33,3
will be zero. The physical implication of this is that we calculate the flexoelectricity occurring due to electromechanical variations occurring because
of the inhomogeneity in the RVE rather than due to a deliberate external application of a strain gradient. Application of such deliberate strain-

Table AT1
The strain gradients at the boundaries determined partly by the boundary conditions.

Boundary condition Boundary ε11,1 ε11,3 ε13,1 ε13,3 ε33,1 ε33,3

BC1 Left – 0 – 0 0 0
Right – 0 – 0 0 0
Top 0 – – – 0 –
Bottom 0 – – – 0 –

BC2 Left – 0 – – – 0
Right – 0 – – – 0
Top 0 0 0 – 0 –
Bottom 0 0 0 – 0 –
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gradients will require modifications of the boundary conditions to introduce higher order functions for the boundary displacements.

A3: Polynomial fits of simulated data as a function of inclusion concentration

As explained in Section 3, the electroelastic coefficients p ξ, ,ij ij and ηijexhibit a linearly increasing strain-dependence as follows:

= + = + = +p a ε b ξ a ε b η a ε b, , .ij ij
p

jj ij
p

ij ij
ξ

jj ij
ξ

ij ij
η

jj ij
η

SE(5)

It was also further observed that the first order coefficients, a a, ,ij
p

ij
ξ and aij

η increase nonlinearly with respect to the inclusion concentration VBTO.
Here we provide the details of the polynomial fits to these data, corresponding to Figs. 4(c), (f), and 5(c). We see that the fit coefficients exhibit a
third order dependence on the inclusion concentration (VBTO expressed as a percentage). The fit equations are given below, and the fits are plotted
along with the simulated data in Fig. AF2.

= × − × + × − ×− − − −a V V V2.025 10 4.34 10 1.111 10 9.127 10 ,p
BTO BTO BTO31

8 3 7 2 5 6 SE(6a)

= × − × + × − ×− − − −a V V V1.335 10 1.276 10 6.769 10 1.78 10 ,p
BTO BTO BTO33

8 3 7 2 6 6 SE(6b)

= − + × + ×a V V V226.5 2428 4.038 10 1.293 10 ,ξ
BTO BTO BTO31
3 2 5 5 SE(6c)

= − + × + ×a V V V343.7 4611 5.114 10 1.752 10 ,ξ
BTO BTO BTO33
3 2 5 5 SE(6d)

= − + −a V V V0.5431 15.55 165.1 285.3,η
BTO BTO BTO31
3 2 SE(6e)

Fig. AF1. The nomenclature used for the 4 boundaries of the RVE described in Table AT1.

Fig. AF2. The polynomial fits of the simulated variation of the first-order coefficients a a, ,ij
p

ij
ξ and aij

η as a function of VBTO.

J.A. Krishnaswamy, et al. Composite Structures 238 (2020) 111967

10



= − + −a V V V0.6822 19.74 205 352.3.η
BTO BTO BTO33
3 2 SE(6f)
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