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A B S T R A C T   

Biological cells are exposed to a variety of mechanical loads throughout their life cycles that eventually play an 
important role in a wide range of cellular processes. The understanding of cell mechanics under the application of 
external stimuli is important for capturing the nuances of physiological and pathological events. Such critical 
knowledge will play an increasingly vital role in modern medical therapies such as tissue engineering and 
regenerative medicine, as well as in the development of new remedial treatments. At present, it is well known 
that the biological molecules exhibit piezoelectric properties that are of great interest for medical applications 
ranging from sensing to surgery. In the current study, a coupled electro-mechanical model of a biological cell has 
been developed to better understand the complex behaviour of biological cells subjected to piezoelectric and 
flexoelectric properties of their constituent organelles under the application of external forces. Importantly, a 
more accurate modelling paradigm has been presented to capture the nonlocal flexoelectric effect in addition to 
the linear piezoelectric effect based on the finite element method. Major cellular organelles considered in the 
developed computational model of the biological cell are the nucleus, mitochondria, microtubules, cell mem-
brane and cytoplasm. The effects of variations in the applied forces on the intrinsic piezoelectric and flexoelectric 
contributions to the electro-elastic response have been systematically investigated along with accounting for the 
variation in the coupling coefficients. In addition, the effect of mechanical degradation of the cytoskeleton on the 
electro-elastic response has also been quantified. The present studies suggest that flexoelectricity could be a 
dominant electro-elastic coupling phenomenon, exhibiting electric fields that are four orders of magnitude higher 
than those generated by piezoelectric effects alone. Further, the output of the coupled electro-mechanical model 
is significantly dependent on the variation of flexoelectric coefficients. We have found that the mechanical 
degradation of the cytoskeleton results in the enhancement of both the piezo and flexoelectric responses asso-
ciated with electro-mechanical coupling. In general, our study provides a framework for more accurate quan-
tification of the mechanical/electrical transduction within the biological cells that can be critical for capturing 
the complex mechanisms at cellular length scales.   

1. Introduction 

The mechanisms that affect the dynamics of the biological cell under 
the influence of extracellular mechanical stimulations have not been 
fully elucidated till date (Xue et al., 2015). The alterations of cell shape 
and structure during biomechanical interactions with the extracellular 
environments are not only critical to cellular processes such as growth, 
motility, differentiation, proliferation and apoptosis but also important 
for modern medical therapies such as tissue engineering and regenera-
tive medicine (Basoli et al., 2018; Katti and Katti, 2017; McGarry and 

Prendergast, 2004). Biological cells are constantly facing a variety of 
mechanical loading conditions that often result in changes in the cellular 
structure (Katti and Katti, 2017; Melnik et al., 2009). In light of this fact, 
there has been a growing interest in quantifying the mechanical prop-
erties of different elements of the cytoskeleton (Xue et al., 2015; Basoli 
et al., 2018; Katti and Katti, 2017; McGarry and Prendergast, 2004; 
Barreto et al., 2013). In particular, the cytoskeleton acts as a bridge 
between the intracellular and extracellular environments of the living 
cell and plays an important role in the cellular response to external 
stimuli (Katti and Katti, 2017; Barreto et al., 2013). Cytoskeleton 
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comprises of different structural components, viz., microtubules, inter-
mediate filaments and actin filaments. Several theoretical, computa-
tional and experimental studies have been reported in the quest for 
accurately quantifying the cellular response to mechanical stimuli 
(Basoli et al., 2018; Katti and Katti, 2017; McGarry and Prendergast, 
2004; Barreto et al., 2013; Fallqvist et al., 2016; Jiang et al., 2017; 
Kononova et al., 2014; Ofek et al., 2009). Recent studies have also 
focused on dissecting the response of individual selected elements of 
cytoskeleton, for e.g., microtubules (tubular protein complexes 
composed of alpha and beta-tubulin monomers) owing to their impor-
tant contribution to the elastic response of the cell along with their 
involvement in different key functions such as maintaining cell struc-
ture, intracellular transport and cell division (Havelka and Cifra, 2009; 
Li et al., 2017; Liew et al., 2015; Setayandeh and Lohrasebi, 2016; 
Thackston et al., 2019; Xiang and Liew, 2012). 

Most of the previously reported computational studies for capturing 
the cell mechanics under external forces only consider the mechanical 
coupling between the applied stress and the induced strain. However, it 
has been widely reported that most of the biological molecules, such as 
microtubules, bones, collagen, etc., possess piezoelectric properties 
(Denning et al., 2017; Brown and Tuszynski, 1999; Chae et al., 2018; 
Chen-Glasser et al., 2018). It is noteworthy to mention that although 
piezoelectricity was discovered in 1880 by the Curies, it was not 
formally studied and reported in the literature until the 1950s in bio-
materials (Chae et al., 2018). Most of the pioneering work related to 
discovering piezoelectricity in the bone and wood was done by Fukada 
(Fukada, 1955; Fukada and Yasuda, 1957) and subsequently, several 
studies have been reported to quantify and investigate the piezoelec-
tricity in other parts of the human body (Fukada, 1968, 1983, 2000; 
Fukada and Yasuda, 1964). The lack of inversion symmetry or non-
centrosymmetric arrangement of dipole moments in most of the bio-
logical molecules (comprising of cellulose and various types of proteins, 
especially fibrous proteins) seems to be responsible for the induced 
piezoelectric characteristics in them (Chae et al., 2018; Chen-Glasser 
et al., 2018). In particular, piezoelectricity is an electro-mechanical ef-
fect induced due to linear coupling between the electric field and me-
chanical strain in the thermodynamic free energy description of the 
electro-elastic behavior of materials (Nguyen et al., 2013; Newnham, 
2005). In addition, the two-way linear coupling of the piezoelectric 
biomaterials results in the conversion of mechanical deformation into an 
applied electric field and vice versa (Ahmadpoor and Sharma, 2015). 
Piezoelectricity is considered to be the dominant electro-mechanical 
transduction mechanism and has been widely used in different appli-
cations, including wearable sensors, flexible actuators, energy harvest-
ing devices, advanced microscopes, artificial muscles and minimally 
invasive surgery (Ahmadpoor and Sharma, 2015; Labanca et al., 2008; 
Madden et al., 2004; Wang et al., 2010). It has been consistently 
considered as a fundamental property of biological tissues (Shamos and 
Lavine, 1967), as well as other biological systems (Fukada, 1983; 
Anderson and Eriksson, 1970). Further, another electro-mechanical 
(nonlocal) effect that has received significantly less attention in this 
context is flexoelectricity, which is a consequence of the two-way linear 
coupling between the electric field and strain gradients as opposed to the 
coupling between the electric polarization and strain in piezoelectricity 
(Nguyen et al., 2013). Flexoelectricity is a size-dependent phenomenon 
that is induced due to the generated strain gradient that disrupts the 
inversion symmetry of the biomaterial due to the non-uniform 
displacement of atoms. Recently, flexoelectricity effects that originate 
from the polarization induced due to strain gradient have been observed 
in different types of biological samples, viz., lipid bilayer, hair cell, vi-
ruses, etc. (Nguyen et al., 2013). It is noteworthy to mention that 
piezoelectricity is produced by uniform strains while flexoelectricity 
appears from inhomogeneous strains or a strain gradient. From the 
theoretical perspective, linear piezoelectricity is a coupling between a 
single strain component and a single electric field component and occurs 
only in non-centrosymmetric materials such as BaTiO3. However, 

flexoelectricity is a coupling between a strain-gradient component and 
an electric field component. This can occur even in centrosymmetric 
materials and the effect is especially magnified in the presence of in-
homogeneities at small length scales, which can give rise to large strain 
gradients and consequent flexoelectric generation of electric fields/-
fluxes. Thus, relative to piezoelectric effects the flexoelectric effects are 
insignificant at the macroscopic scale but become predominant at 
mesoscopic or smaller length scales (Nguyen et al., 2013), where strain 
gradients become considerably large. In the context of the biological 
cell, the nanoscale cross-sections of rigid microtubules in a soft cellular 
matrix can produce significant strain-gradients. Therefore, we anticipate 
flexoelectric contributions to electro-mechanical coupling, in this case, 
to be non-trivial. 

In what follows, the present study includes the effects of piezoelec-
tricity and flexoelectricity while modelling cell mechanics under the 
influence of external mechanical loads. A finite element model of the 
single biological cell has been developed using continuum modelling of 
critically important organelles, viz., nucleus, mitochondria, microtu-
bules, cell membrane and cytoplasm. The overall objective of this study 
is to examine the influence of applied forces from the extracellular side 
on the single-cell mechanics. A fully-coupled electro-mechanical model 
of a biological cell has been developed to quantify the effect of induced 
strains and strain gradient on the electric potential generation by 
considering linear piezoelectric effects and nonlocal effects such as 
flexoelectricity. In what follows, we demonstrate that the effect of 
flexoelectricity is more pronounced as compared to piezoelectricity in 
the biological cells at smaller length scales. 

2. Materials and methods 

This section provides the details of the computational model of the 
biological cell along with the considered material properties (section 
2.1), mathematical framework of the coupled electro-mechanical model 
(section 2.2), as well as the numerical setup and necessary boundary 
conditions used to solve the proposed problem (section 2.3). 

2.1. Computational domain of the biological cell 

The computational domain with different organelles considered in 
the present study has been derived from previous studies such as (Bar-
reto et al., 2013; Ofek et al., 2009; Barvitenko et al., 2018; Bhowmik and 
Pilon, 2016; Li et al., 2015) and has been presented in Fig. 1. A 20 μm 
diameter cell has been embedded with a nucleus (5 μm diameter), 
mitochondria (0.92 μm diameter) and microtubules (25 nm diameter). 

Fig. 1. Schematic of the two-dimensional model of biological cell considering 
various organelles, viz., cell membrane (20 μm in diameter), nucleus (5 μm in 
diameter), mitochondria (0.92 μm in diameter) and microtubules (25 nm in 
diameter). The external force is applied at the top surface of the cell, while the 
bottom surface of the cell is subjected to fixed and electrically grounded 
boundary conditions. 
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Importantly, the arrangement of varying lengths of microtubules con-
nected at the centrosome has been derived from (Barreto et al., 2013; 
Ofek et al., 2009; Barvitenko et al., 2018). The cell membrane has been 
modelled to separate the cytoplasmic (interior) side of the cell with the 
extracellular matrix (external) side. The material properties considered 
in the present study for different cell organelles have been presented in 
Table 1 (Katti and Katti, 2017; Denning et al., 2017; Li et al., 2015; 
Gowrishankar et al., 2006; Tiwari et al., 2009; Kalra et al., 2019). 
Notably, it has been widely reported that microtubules possess piezo-
electricity (Brown and Tuszynski, 1999), thus the present study con-
siders the piezoelectric and flexoelectric coefficients only for 
microtubules and for the rest of the organelles these coefficients have 
been considered to be zero. 

2.2. Coupled electro-mechanical model of biological cell 

The fully coupled electro-mechanical model for the two-dimensional 
biological cell domain in a steady-state regime has been derived from 
the extended linear theory of continuum mechanics for dielectric con-
tinua, in which the strain gradient is incorporated (Krishnaswamy, 
2019a, 2019b, 2019c). The developed model will consider the effects of 
linear piezoelectricity in addition to the strain gradient electricity or 
flexoelectricity. The electric Gibbs free energy function derived from the 
thermodynamical framework that includes the couplings between 
strain, strain gradients and electric fields is given by (Abdollahi et al., 
2014; Bahrami-Samani et al., 2010; He et al., 2019; Gizzi et al., 2015; 
Pandolfi et al., 2016) 

G ¼
1
2
cijklεijεkl �

1
2
κijEiEj � ekijEkεij � μijklEiεjk;l; (1)  

where cijkl is the fourth-order tensor of elastic moduli, εij is the second- 
order mechanical strain tensor, κij is the second-order dielectric tensor, 
eijk is the third-order piezoelectric tensor, Ei is the electric field vector, 
μijkl is the fourth-order flexoelectric tensor and εjk;l is the strain gradient. 
The typical linear piezoelectric models discussed widely in the literature 
would have only the first three terms on the right-hand side, thus clearly 
overlooking the nonlocal effects (Chae et al., 2018; Krishnaswamy et al., 
2019b, Krishnaswamy, 2019c). 

The phenomenological relations describing the coupling of the me-
chanical and electrical fields in linear, homogeneous and isotropic 
elastic dielectric materials derived from Eq. (1) under an infinitesimal 
deformation are expressed as follows 

σij¼
∂G
∂εij
¼ cijklεkl � ekijEk; (2)  

bσijk ¼
∂G

∂εij;k
¼ μlijkEl; (3)  

Di ¼ �
∂G
∂Ei
¼ κijEj þ eijkεjk þ μijklεjk;l; (4)  

where σij is the classical second-order Cauchy stress tensor, bσ ijk is the 
higher-order stress tensor arising from flexoelectricity, Di is the electric 
displacement vector, ∂G

∂εij 
is the partial derivative of Gibbs free energy 

with respect to strain, ∂G
∂εij;k 

is the partial derivative of Gibbs free energy 

with respect to strain gradient, ∂G
∂Ei 

is the partial derivative of Gibbs free 
energy with respect to electric field and subscript represents the com-
ponents of the vector or tensor quantities that range from 1 to 3. More 
details about the reduction of Gibbs free energy equation (Eq. (1)) to the 
above form of equations (Eqs. (2)–(4)) along with a detailed description 
of transformation, symmetry, matrices, tensor properties and notations 
can be found in (Newnham, 2005; Parton and Kudryavtsev, 1988; 
Uchino, 2009). The relationship between the strain (εij) and displace-
ment (ui), and electric field (Ei) and electric potential (φ) is given by Eq. 
(5) and Eq. (6), respectively 

εij¼
1
2
�
ui;j þ uj;i

�
; (5)  

Ei ¼ � φi: (6) 

The constitutive relations described above are further subjected to 
conditions of equilibrium and Gauss’s law with the assumption of van-
ishing body forces and vanishing volume charge density and is given by 
(Mao and Purohit, 2014; Sharma et al., 2010) 
�
σij � bσijk;k

�

;j þFi ¼ 0; (7)  

Di;i¼ 0; (8)  

where Fi represent the components of the body forces. 
Since collagen and microtubule-associated tau protein shares the 

same crystalline homology (de Garcini et al., 1990), thus motivated by 
(Kushagra, 2015) it has been assumed that the piezoelectric potential 
generation in the two proteins under the application of similar forces 
would be analogous. Therefore, in the present study, the piezoelectric 
coefficients of microtubules have been considered similar to that of 
collagen and have been adapted from (Denning et al., 2017). Assuming 
hexagonal symmetry, the piezoelectric coefficients in the strain-charge 
form and using Voigt notation are given as (Denning et al., 2017) 

dij ¼

2

4
0 0 0 d14 d15 0
0 0 0 d15 � d14 0

d31 d31 d33 0 0 0

3

5; (9)  

where the subscript i of the piezoelectric tensor represents the direction 

Table 1 
Electro-mechanical characteristics of different biomaterials used in the present 
study.  

Parameter Value References 

Elastic coefficients 
Elastic modulus of microtubules 1.9 GPa Katti and Katti (2017) 
Poisson’s ratio of microtubules 0.3 Katti and Katti (2017) 
Elastic modulus of cytoplasm and 

extracellular matrix 
0.25 kPa Katti and Katti (2017) 

Poisson’s ratio of cytoplasm and 
extracellular matrix 

0.49 Katti and Katti (2017) 

Elastic modulus of nucleus 1 kPa Katti and Katti (2017) 
Poisson’s ratio of nucleus 0.3 Katti and Katti (2017) 
Elastic modulus of mitochondria 50.3 kPa Li et al. (2015) 
Poisson’s ratio of mitochondria 0.3 Assumed 
Elastic modulus of cell membrane 1.8 kPa Katti and Katti (2017) 
Poisson’s ratio of cell membrane 0.3 Katti and Katti (2017) 
Relative permittivity 
Microtubules 40 Kalra et al. (2019) 
Cytoplasm and extracellular matrix 80 (Gowrishankar et al., 2006;  

Tiwari et al., 2009) 
Nucleus 80 (Gowrishankar et al., 2006;  

Tiwari et al., 2009) 
Mitochondria 80 (Gowrishankar et al., 2006;  

Tiwari et al., 2009) 
Cell Membrane 3 (Gowrishankar et al., 2006;  

Tiwari et al., 2009) 
Piezoelectric coefficients 
d14 � 12 pC/ 

N 
Denning et al. (2017) 

d15 6.21 pC/ 
N 

Denning et al. (2017) 

d31 � 4.84 
pC/N 

Denning et al. (2017) 

d33 0.89 pC/ 
N 

Denning et al. (2017) 

Flexoelectric coefficients 
Longitudinal, μ11 1 nC/m Assumed 
Transverse, μ12 1 nC/m 
Shear, μ44 0  
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of electric field displacement and the subscript j represents the associ-
ated mechanical deformation. 

Since the present study is formulated using the stress form, thus the 
piezoelectric coefficients in strain form given in Eq. (9) have been 
converted into the stress form utilizing the following relation 

eijk ¼ cjklmdilm; (10)  

where eijk are the piezoelectric stress coefficients, cjklm are the compo-
nents of the elastic tensor and dilm are the piezoelectric strain coefficients 
given in Eq. (9). 

Further, the effects of orientation on the piezoelectric tensor of mi-
crotubules have also been accounted for in the present study. The 
transformation of the piezoelectric coefficients from the old coordinate 
system (e.g., x, y and z) to the new coordinate system (e.g., x’, y’ and z’) 
is given by (Kiran et al., 2018) 

e’
ijk ¼ aeijkα; (11)  

where a is the matrix of rotation about any transformed axis, given by 
Eq. (12) and α is the matrix obtained from the direction cosines of old 
coordinate system transformed into the new coordinate system and is 
given by Eq. (13). Specifically, we have: 

a¼

2

6
6
4

l2
1 m2

1 n2
1

l2
2 m2

2 n2
2

l2
3 m2

3 n2
3

3

7
7
5; (12)  

α¼

2

6
6
6
6
6
6
6
6
6
6
6
6
4

l2
1 m2

1 n2
1 2m1n1 2n1l1 2l1m1

l2
2 m2

2 n2
2 2m2n2 2n2l2 2l2m2

l2
3 m2

3 n2
3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 þ n2m3 l2n3 þ n2l3 m2l3 þ l2m3

l3l1 m3m1 n3n1 m1n3 þ n1m3 l1n3 þ n1l3 m1l3 þ l1m3

l1l2 m1m2 n1n2 m1n2 þ n1m2 l1n2 þ n1l2 m1l2 þ l1m2

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(13)  

where 
l1 ¼ cosðx’; xÞ m1 ¼ cosðy’; xÞ n1 ¼ cosðz’; xÞ
l2 ¼ cosðx’; yÞ m2 ¼ cosðy’; yÞ n2 ¼ cosðz’; yÞ
l3 ¼ cosðx’; zÞ m3 ¼ cosðy’; zÞ n3 ¼ cosðz’; zÞ

. 

Considering the two-dimensional model of the biological cell 
described in section 2.1 and assuming transversely isotropic piezoelec-
tric material along the x3-axis, the x1 � x3 or x2 � x3 plane is isotropic 
and either of these could be employed for studying the plane electro- 
mechanical phenomena. Therefore, assuming the x1� x3 plane (i.e. 
ε22 ¼ ε12 ¼ ε23 ¼ 0; E2 ¼ 0), the phenomenological equations (Eqs. 
(2)–(4)) using Voigt notation are reduced to the matrix form as follows 
(Krishnaswamy et al., 2019a, 2019b, 2019c; Saputra et al., 2018) 
2

4
σ11
σ33
σ13

3

5¼

2

4
c11 c13 0
c13 c33 0
0 0 c44

3

5

2

4
ε11
ε33
2ε13

3

5 �

2

4
0 e31
0 e33
e15 0

3

5

�
E1
E3

�

; (14)  

�
D1
D3

�

¼

�
0 0 e15
e31 e33 0

�
2

4
ε11
ε33
2ε13

3

5þ

�
κ11 0
0 κ33

��
E1
E3

�

þ

�
μ1111 μ1331
μ3113 μ3333

��
ε11;1 ε33;1
ε11;3 ε33;3

�

; (15)  

where c11 ¼ λm þ 2μm, c13 ¼ λm, c33 ¼ λm þ 2μm and c44 ¼ μm. The 
terms λm and μm are the Lame’s constants and are given by λm ¼

Emνm
ð1þνmÞð1� 2νmÞ

and μm ¼
Em

2ð1þνmÞ
, where Em is the elastic modulus and νm is 

the Poisson’s ratio presented in Table 1 for different organelles of the 
biological cell. Further, the non-zero higher-order stresses arising from 
flexoelectricity in the two-dimensional model of the biological cell are 
given by 

bσ111¼ μ1111E1; (16)  

bσ113¼ μ3113E3; (17)  

bσ331¼ μ1331E1; (18)  

bσ333¼ μ3333E3; (19)  

where μ1111 ¼ μ3333 ¼ μ11 is the longitudinal flexoelectric coefficient 
and μ1331 ¼ μ3113 ¼ μ13 is the shear flexoelectric coefficient as pre-
sented in Table 1. 

2.3. Numerical implementation 

In this section, a fully coupled electro-mechanical model derived in 
section 2.2 has been numerically implemented to quantify the role of 
linear piezoelectric and nonlocal effects under the application of 
external mechanical stimuli. The bottom surface of the two-dimensional 
model of biological cell presented in Fig. 1 has been subjected to fixed 
and electrically grounded boundary conditions. In particular, the fixed 
boundary condition at the bottom has been adopted from previous 
studies (Garcia and Garcia, 2018a, 2018b; Li et al., 2018; Marcotti et al., 
2019), whereby the cell is placed on the rigid support and the force is 
applied at the top to quantify the mechanical response of the single cell. 
Since the biological cell is exposed to a variety of forces from the 
extracellular side, in order to better understand the mechanics of cells, 
different magnitudes and directions of the applied forces have also been 
considered in this study. The range of forces considered in the present 
study varies from 0.02 nN to 0.1 nN and has been adopted from (Katti 
and Katti, 2017). Importantly, a constant displacement (representing 
either compressive and/or shear force) boundary condition has been 
applied at the top surface of the cell with different magnitudes (20 nm, 
60 nm and 120 nm) (Katti and Katti, 2017) and the induced stresses, 
strains, electric field and electric potential have been computed. In our 
analysis, the strain gradients were not directly specified at the boundary, 
rather displacement boundary conditions were prescribed from which 
the strain gradients were determined from the FEM solution. Thus, the 
flexoelectricity has been computed only by considering the 
electro-mechanical variations occurring within the biological cell that 
has been modelled as a composite comprising of different organelles. 
The quantification of flexoelectricity generated due to a deliberate 
external application of a strain gradient requires further modification of 
the boundary conditions for introducing higher-order functions of the 
boundary displacements, which has not been considered in the present 
analysis (Krishnaswamy et al., 2020). The coupled electro-mechanical 
models of biological cells subjected to external stimuli have been 
solved using a finite-element method (FEM) based commercial COMSOL 
Multiphysics 5.2 software (COMSOL AB, Stockholm, Sweden). A stan-
dard Lagrange (quadratic) shape function has been used in our FEM 
analysis to discretize the space domain for the physical field. The gov-
erning equations of the fully-coupled electro-mechanical models were 
solved adopting a multifrontal massively parallel sparse (MUMPS) direct 
solver with a default preordering algorithm. The numerical convergence 
was attained below the pre-specified value (i.e. 10-5) of the relative 
tolerance for all simulations. The computational domain has been dis-
cretized using an optimal number of heterogeneous triangular mesh 
elements (obtained after conducting a mesh convergence analysis) using 
COMSOL’s built-in mesh generator. Fig. 2(a) presents the meshed 
computational domain of biological cell comprising of 298052 elements 
and 1788531 degrees of freedom. The result of the grid independence 
analysis with different mesh element sizes considering a coupled 
electro-mechanical model of a biological cell with both piezo and 
flexoelectric effects has been presented in Fig. 2(b). The maximum 
electric field intensity (in log(V/m)) computed from the model along 
with the increase in computational cost relative to minimum element 
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size has been shown in Fig. 2(b). Importantly, a trade-off between the 
mesh element size and computational cost has been used for saving time 
and memory requirements and accordingly the mesh with 298052 ele-
ments has been selected in the present analysis. All simulations have 
been conducted on a Dell T7400 workstation with Quad-core 2.0 GHz 
Intel® Xeon® processors. 

3. Results and discussion 

In the present numerical study, a coupled electro-mechanical model 
of the biological cell has been developed using FEM. The main novelty of 

the present work is to quantify the electric potential generation and 
electric field distribution considering both piezoelectric and flexo-
electric effects within the biological cell (as presented in Fig. 1) under 
the influence of various forces applied from the extracellular side. The 
biological cell is approximated as a composite comprising of the 
different organelles (viz., microtubules, mitochondria and cell nucleus) 
placed randomly within the two-dimensional domain. In this section, we 
present a comparative analysis of the consideration of piezoelectric ef-
fect with and without the inclusion of flexoelectric effects within the 
cellular system. The associated limitations of the present model along 
with possible future extensions have also been highlighted. 

Fig. 2. (a) Meshed computational domain of biological cell comprising of 298052 heterogeneous triangular elements, and (b) results of grid independence study.  

Fig. 3. The electric potential (in V) (a-b) and electric field distribution (in log(V/m)) (c-d) predicted with the compressive displacement of 60 nm at the top surface of 
the cell with: (a, c) piezoelectric coupling and (b, d) both piezo and flexoelectric couplings. 
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3.1. Comparative analysis of the piezoelectric and flexoelectric 
contributions to the electro-elastic response 

The electric potential distribution, obtained within the biological cell 
under the influence of 60 nm compressive displacement applied at the 
top surface, has been presented in Fig. 3 (a)-(b). Importantly, Fig. 3(a) 
gives the electric potential distribution considering only the piezoelec-
tric effect while Fig. 3(b) gives the electric potential distribution 
considering both the piezoelectric and flexoelectric effects. As evident 
from Figs. 3(a)-(b), there prevails significant variations in the electric 
potential distribution obtained utilizing the effects of linear piezoelec-
tric and nonlocal flexoelectric contributions. The electric potential 
generated within the biological cell considering both the piezoelectric 
and flexoelectric effects results in almost two orders of magnitude higher 
as compared to the case when only the piezoelectric effect is considered. 
Further, the maximum magnitude of the electric potential is generated 
in the region just beneath the centrosome (where microtubules are 
connected). This can be attributed to the higher values of the strains and 
strain-gradients that will be presented in the subsequent section. The 
electric field intensity distribution obtained with consideration of 
piezoelectric effect alone and considering both piezoelectric and flexo-
electric effects have been presented in Fig. 3(c) and (d), respectively. It 
can be clearly seen that the maximum value of electric field intensity is 
localized at the edges of microtubules in both cases which is in agree-
ment with the results reported in previous studies (e.g., (Havelka et al., 
2011; Ku�cera and Havelka, 2012)). Again, the maximum electric field 
intensity obtained with considering both the piezoelectric and flexo-
electric effects is 4 orders of magnitude higher as compared to when the 
piezoelectric contribution was considered alone. Thus, the obtained 
results clearly demonstrate the importance of consideration of both 
piezoelectric and flexoelectric effects on the electro-elastic response of 
biological cells that becomes predominant at smaller length scales. 
Furthermore, the parametric analysis for different numbers of micro-
tubules within the two-dimensional cellular domain has also been car-
ried out to quantify the electro-elastic response under the application of 
60 nm compressive displacement at the top surface and fixed bottom. 
The electric potential and electric field distribution for different 

numbers of microtubules (viz., 2, 6, 10, 14 and 18) considering both 
piezo and flexoelectric couplings are presented in Figs. 4 and 5, 
respectively. As evident from Figs. 4 and 5, the maximum value of 
electric potential and electric field intensity increases with the increase 
in the number of microtubules from 2 to 18. The visual representation of 
electric potential and electric field distribution presented in Figs. 4 and 5 
are useful in highlighting the areas where such parameters are localized. 
Furthermore, the specific quantification of the electro-mechanical ef-
fects of microtubules under different loading configurations has also 
been presented in Fig. 6. It can be seen from Fig. 6(a) that the deviation 
among the maximum generated electric potentials due to the 
electro-mechanical coupling within the biological cell increases as the 
applied compressive displacement at the top surface of the cell increases 
from 20 nm to 120 nm. Thus, the number of microtubules and loading 
conditions significantly influence the electro-elastic response of the 
two-dimensional biological cell considered in the present study. It is 
noteworthy to mention that a biological cell would typically have more 
than 18 microtubules (the maximum number considered in our devel-
oped model) and therefore we expect a significant enhancement in the 
magnitude of the electro-mechanical effects as reported in this study. 
This enhanced coupling would be quite useful in a number of important 
applications in the field of biocompatible nano-biosensors, drug de-
livery, noninvasive diagnostic techniques and treatment approaches 
(Chae et al., 2018). 

3.2. Effect of variations in the applied forces on the piezoelectric and 
flexoelectric contributions to the electro-elastic response 

As mentioned earlier, in the present two-dimensional model of an 
idealized cell a displacement boundary condition is used at the top 
surface of the cell while the bottom surface is fixed. Accordingly, the 
magnitude of the displacements considered in the present numerical 
study has been considered to be 20 nm, 60 nm and 120 nm (Katti and 
Katti, 2017). The effect of the different magnitude of the applied 
compressive displacements at the top surface of the biological cell on the 
electric potential and electric field distributions has been presented in 
Fig. 7. As evident from Figs. 7(a)-(c), the maximum electric potential 

Fig. 4. The electric potential distribution (in mV) predicted with both piezo and flexoelectric couplings under the compressive displacement of 60 nm at the top 
surface of the biological cell with (a) 2, (b) 6, (c) 10, (d) 14 and (e) 18 microtubules. 
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obtained considering only the piezoelectric effect in the coupled 
electro-mechanical model increases with the increase of applied load. It 
has been found that the increase of the compressive displacement from 
20 nm to 120 nm increases the maximum generated potential from 
0.0002 mV to 0.001 mV. Similar trends have been obtained when the 
flexoelectric effect is introduced within the coupled model (Figs. 7 
(d)-(f)), although the magnitude of the electric potential generated is far 
higher among all cases as compared to considering piezoelectric effect 
alone. The maximum electric potential for the compressive displace-
ments of 20 nm, 60 nm and 120 nm considering both piezoelectric and 
flexoelectric effects has been predicted to be 0.06 mV, 0.2 mV and 0.4 
mV, respectively. 

Apart from the variation of the magnitude of the force, the effect of 
variation in the direction of applied force/displacement has also been 
analyzed in the present study. Three different cases have been consid-
ered, viz., application of 60 nm: (a) compressive displacement, (b) shear 
displacement, and (c) both shear and compressive displacements. The 
maximum electric potential and electric field intensity obtained for 

different considered cases have been summarized in Table 2. The 
application of compressive displacement (i.e. in x-axis) results in higher 
electric potential and electric field generation for both piezoelectric as 
well as combined (piezoelectric and flexoelectric) effects as compared to 
when the shear displacement (i.e. in y-axis) is applied. Further, the 
application of 60 nm displacement in both compressive and shear di-
rections results in the maximum electric potential generation of 0.0038 
mV considering the piezoelectric effect alone and 0.29 mV considering 
both piezoelectric and flexoelectric effects. However, the maximum 
magnitude of the electric field intensity for combined compressive and 
shear displacements has been found to be similar to the case when 
compressive displacement was applied alone. 

The quantitative comparisons of the electro-elastic response of the 
coupled electro-mechanical model of a biological cell with and without 
flexoelectric coupling have been presented in Fig. 8. The predicted 
outcomes of the model, viz., electric potential and electric field intensity 
have been presented across the two selected lines within the two- 
dimensional domain of the biological cell, as shown in Fig. 8(a). Both 

Fig. 5. The electric field distribution (in log(V/m)) predicted with both piezo and flexoelectric couplings under the compressive displacement of 60 nm at the top 
surface of the biological cell with (a) 2, (b) 6, (c) 10, (d) 14 and (e) 18 microtubules. 

Fig. 6. Variation of the maximum of: (a) electric potential and (b) electric field intensity, predicted with both piezo and flexoelectric couplings under the compressive 
displacement of 20 nm, 60 nm and 120 nm at the top surface of the biological cell with different numbers of microtubules. 
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the considered horizontal and vertical lines pass from the center of the 
centrosome where microtubules are connected. The electric potential 
generated under the application of 60 nm displacement at the top sur-
face of the cell with a fixed and grounded bottom has been presented in 
Figs. 8(b-g) for different loading conditions considered in the present 
study, i.e. compressive, shear and combined (both compressive and 
shear). As evident from Figs. 8(b-g), significant variation prevails among 
the predicted values of the electric potential across both the horizontal 
(Figs. 8(b-d)) and vertical lines (Figs. 8(e-g)). For all the cases, the 
electric potential generated with both piezo and flexoelectric coupling is 
on a higher side as compared to the piezoelectric coupling alone. 
Further, among all cases, the maximum variation is induced at the 
centrosome region where the microtubules are connected. Similar trends 
have been obtained for the electric field intensity as presented in Figs. 8 
(h-m). 

The total displacement distribution for different directions of 60 nm 
applied displacements, viz., compressive, shear and compressive plus 
shear has been presented in Fig. 9. As evident from Fig. 9, the maximum 
deformation is induced near the top surface of the biological cells where 
the displacement was applied in the coupled electro-mechanical model. 
The bottom surface of the biological cell experiences zero deformation 
due to fixed boundary conditions applied at that surface. When the 
compressive load is applied, the deformation pattern is highly non- 
uniform typically at the microtubules ends just lying beneath the top 
surface, clearly highlighting one of the main purposes of the 

microtubules, i.e. to maintain the cellular rigidity under the action of 
external forces. Further, the application of shear load leads to low de-
formations at the microtubules just lying beneath the top surface as 
compared to that obtained with the compressive load. Moreover, the 
distribution of induced strain gradients ε11;1 and ε22;2 under the different 
loading conditions have also been presented in Fig. 10. As evident from 
Fig. 10, higher strain gradients are induced during compressive loading 
as compared to a shear load. Due to this, the maximum potential 
generated is on a higher side for the compressive load as compared to the 
shear load, as presented in Table 2. The strain gradients are directly 
linked to the potential generated due to the flexoelectric effect. Conse-
quently, the potential difference under the compressive loading is higher 
in the region just beneath the centrosome (where microtubules are 
connected) owing to higher strain gradients as mentioned earlier in 
section 3.1. 

3.3. Effect of variations of flexoelectric coefficients on the coupled electro- 
mechanical model 

Due to the paucity of the experimental data related to flexoelectric 
coefficients for biomaterials in literature, the present study also evalu-
ated the influence of flexoelectric coefficients ranging from 1 � 10� 3, 1 
and 1 � 103 nC/m that is adopted from the flexoelectric coefficients of 
isotropic inorganic compounds (Liu et al., 2012). Fig. 11 presents the 
effects of flexoelectric coefficients on the electric potential generated 
under the application of 60 nm compressive displacement at the top 
surface of the biological cell. As depicted in Fig. 11, the maximum value 
of the electric potential increases as the magnitude of the flexoelectric 
coefficient increases. The predicted values of the maximum electric 
potential from the coupled electro-mechanical model of the biological 
cell have been found to be 0.001 mV, 0.2 mV and 0.2 V for the flexo-
electric coefficients of 1 � 10� 3, 1 and 1 � 103 nC/m, respectively. Thus, 
the flexoelectric coefficient plays a significant role in the predicted 
electric potential and due consideration needs to be given in accounting 
the flexoelectric effect for accurately predicting the electro-elastic 
response, in particular at smaller length scales. 

Fig. 7. The electric potential distribution (in V) predicted with (a-c) piezoelectric coupling and (d-f) both piezo and flexoelectric couplings under the compressive 
displacement of: (a, d) 20 nm, (b, e) 60 nm, and (c, f) 120 nm at the top surface of the biological cell. 

Table 2 
Comparision of maximum electric potential and electric field intensity attained 
with the piezoelectric and flexoelectric model under the application of initial 
displacement of 60 nm in different directions.  

Applied 
displacement (nm) 

Maximum electric 
potential (mV) 

Maximum magnitude of 
electric field (log(V/m)) 

x-axis y-axis Piezo Flexo Piezo Flexo 

0 � 60 2.88 � 10� 3 0.23 6.50 10.30 
60 0 0.25 � 10� 3 0.045 3.94 7.16 
60 � 60 3.83 � 10� 3 0.29 6.85 10.69  
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3.4. Converse flexoelectric effect on a biological cell 

The flexoelectric effect in biomaterials can be classified into two 
categories: the direct effect and the converse effect (Bruhn et al., 2016; 
Petrov, 2002; Wang et al., 2019; Chen et al., 2019; Jerusalem et al., 
2019). The direct effect refers to the generation of electric potential 
under the application of mechanical force. While the converse effect is 
the reverse of direct effect and refers to the mechanical displacement 
induced within the material under the application of electric potential. 
The results mentioned in the aforementioned sections refer to the direct 

effects. Notably, in cardiac cells and tissues, this direct effect is referred 
to as excitation-contraction coupling (ECC), an electro-mechanical 
process by which the electrical activation of cardiac myocytes results 
in an increase in the free intracellular calcium concentration that leads 
to the contraction of the heart muscle (Bers, 2001; Timmermann et al., 
2017). Furthermore, there has also been extensive evidence about the 
reverse of ECC known as cardiac mechano-electric feedback (MEF), the 
mechanism by virtue of which the mechanical forces experienced by 
myocardial tissue alters their electrophysiological characteristics (Cos-
tabal et al., 2017; Franz and Bode, 2003; Propp et al., 2019; Quinn et al., 

Fig. 8. (a) Schematic of two lines (horizontal and vertical) selected for comparing the outcomes of the coupled electro-mechanical model considering piezoelectric 
coupling alone and with both piezo and flexoelectric couplings. Comparative analysis of the electric potential (b-g) and electric field distribution (h-m) predicted 
across horizontal (b-d, h-j) and vertical (e-g, k-m) lines with and without consideration of flexoelectric coupling. 
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2014; Vikulova et al., 2016). The induction of mechanical effects on 
excitation has also been enumerated in isolated cells, cell membranes, 
multicellular preparations, and whole organs and organisms (Quinn 
et al., 2014; Vikulova et al., 2016). Thus, in this present study, simula-
tions have also been conducted to quantify the converse effect, i.e. the 
mechanical response of the biological cell under the application of 
electric stimulation. In particular, a 100 mV electric potential (similar to 
(Bruhn et al., 2016)) has been applied at the top surface of the biological 
cell with a fixed and grounded bottom. The electro-elastic response of 
the converse flexoelectric effect has been shown in Fig. 12. In particular, 
the electric potential distribution within the biological cell has been 
presented in Fig. 12(a). While Fig. 12(b) presents the mechanical 
response of the biological cell under the application of electrical stimuli. 
The maximum displacement induced within the cell has been found to 
be close to 1 nm under the application of 100 mV electrical potential 
applied at the top surface. Further, as depicted in Fig. 12(b), the applied 
electrical stimuli at the top surface acts as a combined force with the 

maximum magnitude of displacements induced on the top and right side 
of the biological cell. Fig. 12(c and d) presents the distribution of 
induced strain gradients ε11;1 and ε22;2, respectively, under the appli-
cation of electrical stimuli at the top surface. As evident from Fig. 12(c 
and d), higher strain gradients are mostly concentrated at the edges of 
the microtubule and cell membrane. This can be attributed to the fact 
that the microtubules (or cytoskeleton), which is the stiffest part of the 
biological cell that helps them to withstand both static and dynamic 
loads, are the first organelle to respond to any external stimuli and 
subsequently transmitting them to other organelles over both short and 
long timescales. 

3.5. Effect of mechanical degradation of the cytoskeleton on the coupled 
electro-mechanical model 

The cytoskeleton of the biological cell is dynamic during the entire 
lifecycle and can also be degraded resulting in considerable changes in 

Fig. 8. (continued). 

Fig. 9. The total displacement distribution (in m) within the biological cell with the application of 60 nm: (a) compressive load, (b) shear load, and (c) both 
compressive and shear loads at the top surface and with fixed bottom surface. 
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their elasticity owing to ageing or pathological diseases (Katti and Katti, 
2017; Guz et al., 2014). Further, the cytoskeleton mechanics can also be 
disrupted due to the application of various anti-cancer drugs used for 
therapeutic treatment of cancerous cell. Moreover, in vitro studies re-
ported in previous literature clearly indicates that the elastic modulus of 
cancerous cells is significantly lower as compared to the healthy cells 
(Abidine et al., 2018; Suresh, 2007a, 2007b). Thus, in the present study, 
the influence of degradation of the cytoskeleton has also been consid-
ered on the electro-elastic response of biological cells under external 
stimuli. The mechanical degradation of the cytoskeleton has been 
modelled by reducing the elastic moduli of the microtubules by 90 
percent (Katti and Katti, 2017). The other structural features of the 
biological cells are maintained as it is. Fig. 13 presents the effects of the 
mechanically degraded cytoskeleton on the predicted piezoelectric and 
flexoelectric responses under the action of a 60 nm compressive load at 
the top surface of the biological cell. As depicted in Fig. 13, the degra-
dation of microtubules by 90% results in a significant increase in the 
predicted piezoelectric voltage from 0.0005 mV to 0.002 mV. Further, 
flexoelectric coupling also results in a corresponding increase of electric 
potential from 0.2 mV to 0.25 mV for 90% degraded microtubules. This 

can be attributed to the fact that the degraded microtubules will result in 
a larger magnitude of the deformation within the cytoplasm of the 
biological cell as compared to healthy microtubules and subsequently 
larger strain gradients. 

3.6. Limitations and future directions 

The present study models the biological cell as a two-dimensional 
composite comprising of different organelles having distinct material 
properties. A linearly coupled electro-mechanical model has been 
developed to quantify the cellular mechanics under the application of 
different magnitude and directions of external forces considering 
piezoelectric and nonlocal flexoelectric effects. However, number of 
limitations still prevail in this analysis. First and foremost is the basic 
assumption that the biological cell behaves as a linear elastic material, 
that has been actually derived from previous numerical modelling 
studies available in the literature (Katti and Katti, 2017; Garcia and 
Garcia, 2018a). In fact, the living cells are visco-elastic and the same has 
been elucidated by number experimental studies available in the liter-
ature, such as (Alcaraz et al., 2003; Efremov et al., 2017; Raman et al., 

Fig. 10. The strain gradients (in logarithmic scale) induced within the biological cell with the application of 60 nm: (a, d) compressive load, (b, e) shear load and, (c, 
f) both compressive and shear loads. (a-c) represents ε11;1 and (d-f) represents ε22;2. 

Fig. 11. Electric potential distribution (in V) predicted for different values of flexoelectric coupling coefficients: (a) 1 � 10� 3 nC/m, (b) 1 nC/m, and (c) 1 � 103 

nC/m. 
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2011). Thus, it could be of great interest to quantify the electro-elastic 
response of biological cells considering the visco-elastic model pre-
sented in (Garcia and Garcia, 2018b; Pandolfi et al., 2017). Another 
major limitation of this study is the simplification of biological cells in 
the two-dimensional domain and the absence of dynamic response. 
Although, the present study was focused on developing the basic 
framework for capturing the electro-elastic response of the biological 
cell considering the most simplified model, incorporating the dynamic 
analysis in the three-dimensional model will definitely provide a more 
precise and accurate response of cellular mechanics and would assist in 
different promising avenues of medical technology ranging from sensing 
to energy harvesting devices fabrication. One of the possible extensions 
in the three-dimensional domain would be consideration of the cellular 
tensegrity model (McGarry and Prendergast, 2004; Ingber et al., 2014) 
whereby the individual components of the cytoskeleton, viz., microtu-
bules, actin filaments and intermediate filaments are modelled using a 
discrete beam or truss elements. More recently a three-dimensional 
finite element bendo-tensegrity model of a eukaryotic cell has been re-
ported in (Bansod et al., 2018) to quantify the mechanical response of 
cellular and sub-cellular components to external stimuli. Further, in the 
present analysis, the electro-elastic properties of the biological cells 
have been considered to be homogeneous and isotropic, addressing this 
issue could be one of the possible future extensions of the proposed 
model. Moreover, the electro-mechanical response of the biological cell 
can also be influenced by the inelastic mechanisms (damage and viscous 
effects) along with active responses, growth, remodeling, adhesion and 
migration (Ambrosi et al., 2019; Marino, 2019). Multiscale modelling 

approaches could be utilized for capturing the nuances of such phe-
nomena in the biological cells. The continuum formulation to model 
growth, differentiation and damage can be found in (Cyron and Hum-
phrey, 2014, 2017; Doblar�e and García-Aznar, 2006) and the biophys-
ical model to simulate cell adhesion and migration has been presented in 
(Vassaux et al., 2019). Thus, future studies are warranted for integrating 
such remarkable effects within the model and improve the accuracy of 
the proposed model. However, despite the aforementioned limitations, 
the developed coupled electro-mechanical model of a biological cell is 
one of the initial model that incorporates the piezoelectric and flexo-
electric effects within the biological cell. The comparative analysis of the 
predicted outcomes of the model presented in this study would signifi-
cantly assist in better understanding of the complex electro-mechanical 
response of the biological cell to external stimuli along with designing of 
electro-mechanical devices for different applications in the medical 
sciences. 

4. Conclusion 

In this study, a computational model of the biological cell has been 
developed taking into account the electro-mechanical coupling of 
important physical effects such as linear piezoelectric and nonlocal 
flexoelectric effects. A two-dimensional model of the biological cell has 
been considered comprising of different key organelles that are sub-
jected to different mechanical loading conditions from the extracellular 
side. It has been found that the effect of the inclusion of flexoelectric 
coupling in the electro-mechanical model is far more pronounced as 

Fig. 12. Spatial distribution of: (a) electric potential (in V), (b) total displacement (in m), (c, d) strain gradients induced within the biological cell under the 
application of 100 mV electric potential applied at the top surface with a fixed and grounded bottom. (c) represents ε11;1 and (d) represents ε22;2. 
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compared to including piezoelectric coupling alone. In its turn, this 
suggests that at smaller length scales the contribution of the flexoelectric 
coupling on the electro-mechanical response is quite significant and 
shall be accounted for accurately predicting the mechanics of biological 
cells under different loading conditions. It has been further revealed that 
the effect of compressive force on the biological cell results in enhanced 
electro-mechanical coupling in comparison to shear force. The results 
presented in the study further highlight that both the piezo and flexo-
electric responses are dramatically affected by the mechanical degra-
dation of the cytoskeleton. The developed model and the results 
presented in the study should be useful for our better understanding of 
the mechanics of biological cells that cannot be easily elucidated with 
experimental studies. The proposed model can be further extended for 
capturing the dynamics of the biological cells subjected to different 
boundary conditions using a three-dimensional domain and including 
additional cytoskeleton structures for extracting other useful and critical 
information of underlying mechanics at the cellular scale. 
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