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A B S T R A C T

Nanoscale systems fabricated with low-dimensional nanostructures such as carbon nanotubes, nanowires,
quantum dots, and more recently graphene sheets, have fascinated researchers from different fields due to
their extraordinary and unique physical properties. For example, the remarkable mechanical properties of
nanowires empower them to have a very high resonant frequency up to the order of giga to terahertz. In
this paper, we originally propose a nonlinear model for the vibrations of piezoelectric nanowire resonators
with added mass considering thermal variation, electromagnetic field, surface effects, external excitation,
and nonlinear foundation. The mathematical model for such nanowires is formulated by applying the Euler–
Bernoulli beam theory in conjunction with the nonlocal differential constitutive relations of Eringen type. In
order to analyze the obtained nonlinear partial differential equation (PDE), we first use the Galerkin method
in combination with a perturbation technique to obtain the primary and super-harmonic resonances. After
finding the resonance cases, a parametric sensitivity analysis is carried out to investigate the effects of key
parameters on the sensitivity of the nanowire resonators in mass sensing. Our main hypothesis is that tiny
particles attached to the surface of the nanowire resonator would result in a detectable shift in the value of
the jump frequency. The sensitivity analysis shows that the nanowire resonator is capable of detecting added
mass in the order of zeptogram. In addition, we have developed a system identification technique based on
the proposed mathematical model for the detection of tiny mass rested on the nanowire resonator that we
have analyzed. Furthermore, a molecular dynamic simulation study has been presented to qualitatively verify
the hypothesis of frequency shift due to the added mass. The results demonstrate a high potential of nanowire
resonators in detecting tiny bio-particles such as DNA, RNA, proteins, viruses, and bacteria.
. Introduction

Detection of tiny objects such as DNA, RNA, proteins, viruses, and
acteria is very important for preventing, accurate diagnosing and
ffective curing different types of diseases. Accordingly, it is crucial
o develop novel, practical, and effective techniques to detect tiny
io-objects. This important and interdisciplinary subject has prompted
cientists, engineers, and applied mathematicians to propose and in-
estigate innovative approaches for the detection of bio-objects. Recent
ears have witnessed rapid advances in the development of nanodevices
or different applications such as self-powered sensing, energy harvest-
ng and mass sensing with potential of bio-object detection. Several
anoresonators have been designed, modeled, optimized and fabricated
or tiny mass sensing. These nanoresonators are made of carbon nan-
tubes, graphene sheets, and nanowires (NWs) [1–3]. Due to their
ltra-high modulus of elasticity and resonant frequency, they received
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substantial attention of the researchers as they can be used as sen-
sors for label-free detection of specific biological objects. Although a
number of important studies have been undertaken in this field so
far, in particular those aiming to implement nanoresonators for bio-
object detection [4–6], there is still lack of robust and systematic
modeling techniques for the nanoresonators. Specifically, it concerns
the application of nanowires in biological detection, taking into account
some of the most important parameters. These include parameters
connected with electromagnetic fields, thermal variations, external
excitations, axial loads, nonlocal and surface effects, large oscillations,
and nonlinear viscoelastic foundations. Having in mind applications in
mass detection, it is highly important to develop a mathematical model,
which can be used to investigate the effect of these parameters on the
frequency behavior of nanowires. In fact, the outstanding capability
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R. Fallahpour and R. Melnik
of nanomechanical resonators, specially nanowires for ultra-high res-
olution mass sensing applications, is largely related to their dynamic
characteristics [7].

The utilization of continuum theories for the modeling of vibra-
tions of nanoresonators has been popular among the researchers in
this field [8,9]. Modeling of nanoresonators are categorized in two
different themes. In the first theme, the focus of researchers is on
the use of different continuum theories such as Timoshenko, Euler–
Bernoulli and Rayleigh to model vibrations of nanostructures such as
nanowires [10,11]. Based on their investigations regarding the con-
tinuum theories, researchers have considered different effects such as
thermal variations and piezoelectric potential to model vibrations of
nanowires. In addition, a few researchers have combined classical and
nonlocal beam theories to characterize the dynamics of nanowires.
Using these combined models, they investigated the effect of different
parameters such as size, surface and nonlocal parameters on the vibra-
tions of nanowires [12,13]. The second theme is based on the models
with focus on the applications of nanoresonators in mass sensing,
biological detection and drug delivery [14,15]. Similar to the first
category of research in this area, researchers have used classical and
non-classical theories to study the applications and potency of the
nanowire resonators for the detection of tiny bio-objects and chemical
atoms [16,17].

The use of continuum models for the vibrations analysis of
nanowires started from the early 2000s (e.g. [18] and references
therein). The main aim of most of the published works on the vibrations
of nanowires at that time was finding a closed-form representation for
the natural frequency of the nanowires, and also providing a mathe-
matical framework to predict the behavior of nanowires under different
cases of oscillations. The focus of earlier research on this topic was on
the development of one-dimensional vibration models to obtain the nat-
ural frequencies of nanowires considering the electrostatic effect, while
using classical beam theories. One of the earliest efforts on modeling
vibrations of nanowires was presented by Ustunel et al. [19] in which
the authors proposed a one-dimensional model for NWs. In another
pioneering work, Vincent et al. [20] studied self-sustained vibrations of
nanowires under a constant electron beam . In an interesting work by
Zhou et al. vibrations of zinc oxide nanowires were studied considering
the electric field effects. Their developed partial differential equation
was converted to a nonlinear ordinary differential equation with both
quadratic and cubic nonlinearities [10].

Another path of research in this field has been the consideration
of nonlocal and surface effects in the vibrations of nanowires. One of
the earliest attempts in which a continuum model was proposed for the
vibration analysis of nanowires was a paper by He and Liley where they
developed a model for the vibrations of NWs considering surface effects
and different boundary conditions [13]. Effects of surface stress on
both buckling and vibrations of piezoelectric nanowires were studied
by Wang and Feng in 2010 [12]. They showed that the resonant
frequency of piezoelectric nanowires can be adjusted using the applied
electric potential. They also demonstrated that piezoelectricity and the
surface stress have quite similar effects on the frequency response of
the nanowire [12]. Kiani in one of his early research papers in this
area [21], developed a nonlocal continuum model to study free lon-
gitudinal vibrations of tapered nanowires employing the perturbation
techniques. In this study, he considered two different types of boundary
conditions including fixed–fixed and fixed–free constraints. One of
the main results of the research was related to the rate of change
in NW radii. For higher values of the small scale effect parameter,
the rate of change in radii is more pronounced on the variation of
the natural frequencies and phase velocities [21]. Hasheminejad and
Gheshlaghi [22] developed a dissipative surface stress model to investi-
gate the influence of size-dependent surface dissipation on fundamental
frequencies of nanowires. Euler–Bernoulli beam theory in conjunction
with the classic Zener model was used to develop the fifth order

differential equation, which describes the flexural vibrations of NWs. Fu
et al. [23] studied nonlinear free vibrations of NWs using nonlocal
Timoshenko beam theory considering the surface effects. Askari and
Esmailzadeh used nonlocal Timoshenko beam theory to study vibra-
tions of nanowires considering geometrical nonlinearity and different
surface areas using the variational iteration method [24]. He and
Lilley investigated the vibrations of nanowires considering the surface
effects and using the Timoshenko beam theory. They obtained the
quality factor of nanowire’s vibrations, and showed that considering
the surface stress decreases the stiffness of cantilever nanowire, and
increases the stiffness of nanowires with simply supported boundary
conditions [25]. Samaei et al. [26] studied vibrations of piezoelectric
nanowires considering surface effects. They developed a continuum
model for the vibrations of nanowires, which takes into account the
effects of surface elasticity, residual surface tension, and transverse
shear deformation. The main conclusions of their work is that the
surface effects increase the natural frequency for the lower modes.

A few researchers have developed models for the vibrations of
nanowires considering external excitations, elastic foundations and
nonlinearity. For example, both free and forced vibrations of nanowire
rested on an elastic substrate were studied by Su et al. They assumed
Winkler–Pasternak foundations and generalized substrate models as
the foundation model for the nanowire [11]. In their work, they ob-
tained the characteristic equations, mode shapes and effective Young’s
moduli of the nanowires considering different forms of boundary con-
ditions [11]. In another research [27], free and forced transverse
vibrations of nanowires were studied taking into account the surface
effects based on the Timoshenko beam theory. A comparison study was
also performed by the authors to verify the obtained theoretical results
for the fundamental frequencies with the FEM simulation [27]. Zhang
et al. in [28] analyzed transverse vibrations of embedded nanowires
under axial compression taking into account the higher order surface ef-
fects. Jin and Li studied nonlinear dynamics of silicon nanowire (SiNW)
considering nonlocal effects. They performed a bifurcation analysis,
which shows that the nonlocal effect causes the most significant impact
when the excitation frequency equals to the natural frequency of the
structure [29]. Sedighi and Bozorgmehri probed nonlinear vibrations
along with adhesion instability of nonlocal nanowires with consider-
ation of surface energy. They revealed that the critical Casimir value
decreases by increasing the nonlocal parameter [30].

In recent studies, researchers have also focused on irregular ge-
ometries of nanowire resonators. For example, Khosravi et al. [31]
developed a vibration model for the torsional vibration of a triangular
nanowire resonator. They showed that the triangular edge as well as the
nonlocal parameter have an inverse impact on the natural frequency. In
another research, Yuan et al. [32] studied torsional vibration of non-
prismatically non-homogeneous nanowires with multiple defects. They
showed that the nonlocality effect lessens by growing the nanowire’s
length.

In the present paper, we originally study the effect of temperature
variations and electromagnetic fields effect on the sensitivity of piezo-
electric nanowire-based resonators with application to ultra-high res-
olution mass sensing. Using the nonlocal Euler–Bernoulli beam theory
and considering the surface effect, a mathematical model is developed
for the nanowire resonators. A nonlinear Winkler foundation along
with Pasternak coefficient are assumed for the oscillating nanowire
resonator. Furthermore, a large oscillation term, which results in non-
linearity, is considered for the vibrations of the considered system. It
is supposed that the nanoresonator is triggered with a periodic force.
In addition, the proposed mathematical model for the vibrations of
nanoresonators includes a term relevant to the added mass, which can
be considered as a tiny bio-object such as virus. In order to investigate
the nanoresonators principal mode of vibrations, the Galerkin method
is implemented, and accordingly, a corresponding nonlinear ordinary
differential equation is obtained. The Method of Multiple Scales (MMS)
is used to find the primary resonance of the nanoresonator, then its

sensitivity is investigated to the tiny added mass based on the analysis
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of the jump phenomenon in the scale of zeptogram. It should be
noted that there are several semi-analytical and numerical approaches
for analyzing nonlinear oscillatory systems. Among these techniques,
MMS has shown an excellent capability in the analysis of nonlinear
characteristics such as jump phenomenon. Another interesting point
about the MMS is its sufficient accuracy for qualitative analysis based
on its first approximation. This method tackles the shortcomings of
other classical techniques such as the Poincare–Lindstedt method and
the straightforward expansion with two important advantages. First,
introducing scaled space and time coordinate in MMS technique helps
in capturing the slow pattern modulation. Secondly, we can obtain
the solvability condition based on secular terms. A molecular dynamic
simulation is also presented in this paper to verify the hypothesis of
frequency shift of nanowire resonators based on added mass.

The main contributions of the present research are the develop-
ment of a novel mathematical model for the vibrations of nanowire
resonators, and a comprehensive analysis of frequency shifts owing
to added mass to nanowire resonators using primary, sub-harmonic,
and super-harmonic resonances. In addition, a new efficient online
parameter identification technique based on the developed model for
the tiny mass detection has also been proposed.

2. Mathematical modeling

In this section, we aim to model the vibrations of piezoelectric
nanowires, taking into account electromagnetic, thermal, nonlocal and
surface effects with an external load rested on a Winkler founda-
tion [33]. Fig. 1(a) shows the geometry of the considered nanowire
resonator in this paper. The trajectories with violet and blue colors rep-
resent the magnetic fields in Fig. 1(a) and Fig. 1(c), respectively. There
exist different types of nanowire resonators with distinct forms of cross
sections such as circular and rectangular. In our model, it is supposed
that the nanowire has a rectangular cross section as it can provide a flat
surface on its top for locating the added mass, comparing to the circular
cross section. The nanowire resonator has the length of 𝐿, height of 2ℎ,
and width of 𝑏, as indicated in Fig. 1(b). Fig. 1(c) represents a 3D view
of the nanowire resonator. In the first approximation, we will represent
our nanowire as a beam.

Based on the Euler–Bernoulli beam theory (EBT), the displacement
field of a nanowire can be found by the following equations:

𝑢𝑎 = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥, 𝑡)
𝜕𝑥

, 𝑢𝑏 = 0, 𝑢𝑐 = 𝑤(𝑥, 𝑡), (1)

in which 𝑢 and 𝑤 represent the axial and transverse deflection, respec-
tively. According to the nonlinear von Karman theory [34], the only
nonzero strain of the Euler–Bernoulli beam theory is as following:

𝜖𝑥𝑥 =
𝜕𝑢(𝑥, 𝑡)
𝜕𝑥

+ 1
2

(

𝜕𝑤(𝑥, 𝑡)
𝜕𝑥

)2
− 𝑧

𝜕2𝑤(𝑥, 𝑡)
𝜕𝑥2

, (2)

where 𝜖𝑥𝑥 is the strain in 𝑥 direction.
In accordance with the EBT, we have the following relations be-

tween transverse shear forces 𝑉 , bending moment 𝑀 and the axial
forces 𝑁 :
𝜕𝑉 (𝑥, 𝑡)
𝜕𝑥

=
𝜕2𝑀(𝑥, 𝑡)
𝜕𝑥2

+𝑁(𝑥, 𝑡)
𝜕2𝑤(𝑥, 𝑡)
𝜕𝑥2

, (3)

nd
𝜕𝑁(𝑥, 𝑡)
𝜕𝑥

+ 𝑓𝑢 = 0, (4)

here 𝑓𝑢 is the distributed axial load (measured per unit undeformed
ength) [35–37]. Based on the nonlocal theory, we can write:

(𝜎𝑥𝑥) = 𝐸𝜖𝑥𝑥, 𝛯(𝜎𝑥𝑧) = 2𝐺𝜖𝑥𝑧, 𝛯 = 1 − 𝛤 𝜕2

𝜕𝑥2
, (5)

n which 𝐸 is the Young modulus and 𝐺 represents shear modulus.
implies the nonlocal parameter, which is equal to zero in the local

heory.
 l
Following [36,38], we have the axial force–strain relation, which is
dentical in all beam theories:

(𝑁) = 𝑁 − 𝛤 𝜕
2𝑁
𝜕𝑥2

= 𝐸𝐴
[ 𝜕𝑢
𝜕𝑥

+ 1
2

(

𝜕𝑤
𝜕𝑥

)2
]

, (6)

and

𝐴 = ∫𝐴
𝑑𝐴, ∫𝐴

𝑧𝑑𝐴 = 0,

here the 𝑥 axis passes through the geometric centroid of the beam.
Accordingly, the constitutive relationship between bending moment

nd strain is constructed as below [38]:

− 𝛤 𝜕
2𝑀
𝜕𝑥2

= −𝐸𝐼 𝜕
2𝑤
𝜕𝑥2

. (7)

Extending the nonlocal theory to piezoelectric material, one could have:

𝜎𝑛 = ∫𝑉
𝐾(|𝑥′ − 𝑥|, 𝜏𝑚)[𝐶𝜖𝑡(𝑥′) − 𝑒𝐸𝑒(𝑥′)]𝑑𝑥, (8)

= ∫𝑉
𝐾(|𝑥′ − 𝑥|, 𝜏𝑚)[𝑒𝜖𝑡(𝑥′)− ∈ 𝐸𝑒(𝑥′)]𝑑𝑥. (9)

he differential constitutive equations corresponding to the integral
orm of Eqs. (8) and (9), can be reconstructed as below:

𝑛 − 𝛤 ∇2𝜎𝑛 = 𝐶𝜖𝑡 − 𝑒𝐸𝑒, (10)

− 𝛤 ∇2𝐷 = 𝑒𝜖𝑡 + 𝜆𝐸𝑒, (11)

n which 𝐷, 𝐸𝑒, 𝐶, 𝑒 and 𝜆 are electric displacement, electric field,
ourth-order elasticity tensor, piezoelectric constants and dielectric con-
tants, respectively.

In order to develop the mathematical model of the considered
anoresonator, we need to find the corresponding axial load 𝑁 , shear
orce 𝑉 , and bending moment 𝑀 . This will lead us to having all
equired mechanical terms in Eq. (3) based on the Euler–Bernoulli
eam theory. In addition, as we are using nonlocal theory, it is required
o use all equations described in Eq. (5) to Eq. (11).

We first start with modeling the surface effects in our nanowire
esonator. As we deal with a nanoresonator, due to the small ratio of the
olume to area, it is important to account for the surface effects in the
odeling in order to be able to carry out a more practical and accurate

nalysis of the mass sensitivity of the nanowire resonator. The surface
tresses of the nanowire can be described by the following equation:

𝑥𝑧 = 𝜏0
𝜕𝑤
𝜕𝑥

. (12)

As it is required to fully satisfy the equilibrium conditions between
nanowire’s main core and corresponding surface layers, the following
equations for both the upper and lower surfaces must be satisfied [39]:

𝜎𝑢𝑝𝑚𝑗,𝑚 − 𝜎𝑢𝑝𝑗𝑧 = 𝜌0
𝜕2𝑢𝑢𝑝𝑗
𝜕𝑡2

, 𝜎𝑙𝑚𝑗,𝑚 + 𝜎𝑙𝑗𝑧 = 𝜌0
𝜕2𝑢𝑙𝑗
𝜕𝑡2

, (13)

where the 𝑢𝑝 and 𝑙 signs represent the upper and lower surfaces, respec-
tively, 𝜌0 is the surface density of surface layers. We have 𝑚 = 𝑥, 𝑦 and
𝑗 = 𝑥, 𝑦, 𝑧. Considering Eqs. (1) and (12), Eq. (13) can be reconstructed
for the transverse vibrations of the nanowire as follows [39]:

𝜎𝑢𝑝𝑧𝑧 = 𝜏0
𝜕2𝑤
𝜕𝑥2

− 𝜌0
𝜕2𝑤
𝜕𝑡2

, 𝜎𝑙𝑧𝑧 = −𝜏0
𝜕2𝑤
𝜕𝑥2

+ 𝜌0
𝜕2𝑤
𝜕𝑡2

. (14)

The following equation displays the linear variation of 𝜎𝑧𝑧 through
the nanowire thickness:

𝜎𝑧𝑧 =
1
2
(𝜎𝑢𝑝𝑧𝑧 + 𝜎

𝑙
𝑧𝑧) +

𝑧
2ℎ

(𝜎𝑢𝑝𝑧𝑧 − 𝜎
𝑙
𝑧𝑧). (15)

ubstituting Eq. (14) into Eq. (15), results in the following equation for
𝑧𝑧 :

𝑧𝑧 =
𝑧
ℎ

(

𝜏0
𝜕2𝑤
𝜕𝑥2

− 𝜌0
𝜕2𝑤
𝜕𝑡2

)

. (16)

ased on the Laplace–Young equation, we assume two distributed
oads are exerted along the 𝑥 coordinate due to the effect of residual
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Fig. 1. Schematic of the nanoresonator, (a) a piezoelectric nanowire under harmonic load, thermal and electromagnetic fields effects, (b) cross section of the nanowire, (c) 3D
view of the nanowire resonator.
surface stress. Accordingly, the following forms are considered for the
distributed loads pertinent to the surface stress effects:

𝑔1(𝑥) = 𝑏𝜏𝑢𝑝0
𝜕2𝑤
𝜕𝑥2

, 𝑔2(𝑥) = 𝑏𝜏𝑙0
𝜕2𝑤
𝜕𝑥2

. (17)

It is supposed that, both upper and lower surfaces have analogous
properties, therefore, the resultants of the above-mentioned distributed
loads are presented as below [39]:

𝐺𝑠(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥) = 2𝑏𝜏0
𝜕2𝑤
𝜕𝑥2

. (18)

Temperature variations can change the sensitivity of the nanowire
resonator for mass sensing. For understanding the effect of thermal vari-
ations on the response of the nanowire resonator, we should consider
the exerted stress due to the thermal load in our modeling. In order to
account for the thermal effect in our model, we need to add the thermal
stress–strain term to Eq. (2). The thermal stress term can be written as
follows:

𝜎𝜃 = − 𝐸
1 − 2𝑣

𝛼𝑥𝜃𝑡, (19)

where 𝜎𝜃 , 𝜈, 𝛼𝑥, and 𝜃𝑡 represent the axial thermal stress, Poisson ratio,
the coefficient of thermal expansion in the direction of 𝑥 axis, and tem-
perature, respectively. Accounting for large amplitudes of oscillations
of the nanowire and the axial load due to the thermal stress, we have
the following relation for the longitudinal displacement 𝑢 as a function
of transverse deformation 𝑤 [40]:
𝑢 = −1
2 ∫

𝐿

0

(

𝜕𝑤
𝜕𝑥

)2
𝑑𝑥 + 𝑥

2𝐿 ∫

𝐿

0

(

𝜕𝑤
𝜕𝑥

)2
𝑑𝑥 − 1

2 ∫

𝐿

0

(

1
1 − 2𝑣

)

𝛼𝑥𝜃𝑡𝑑𝑥.

(20)

Substituting Eqs. (2) and (20) into Eq. (4) results in:

𝑇 = 𝐸𝐴
2𝐿

(

∫

𝐿

0

(

𝜕𝑤
𝜕𝑥

)2
𝑑𝑥 − 1

1 − 2𝑣
𝛼𝑥𝜃𝑡

)

, (21)

where 𝑇 represents two terms of the axial load owing to thermal stress
and the large oscillations of the nanowire.

Another important term that should be taken into account is the
electromagnetic field effect. Several researchers have shown that the
magnetic field is affecting the vibrations of nanowire [41]. In accor-
dance with this observation, it is critical to take into account the effect
of electromagnetic field in our modeling of nanowire resonators with
application in mass sensing. As we only investigate the transverse vibra-
tions of the nanowire, the Lorentz force in 𝑧-direction is implemented
as:

𝑓𝑒𝑚 = 𝑓𝑧 = 𝜁𝑚𝐻
2
𝑥
𝜕2𝑤
𝜕𝑥2

. (22)

The above equation is used in our governing equation of the trans-
verse vibration, Eq. (34), as the term for electromagnetic force. The
mathematical procedure for finding this equation can be found in
Appendix A.

For the piezoelectric effect, we should find its corresponding ax-
ial load. Accordingly, the electric displacement can be given by the
following equations [42,43]:

𝐸 = −
𝜕𝜓

, 𝐸 = −
𝜕𝜓

, (23)
𝑥 𝜕𝑥 𝑧 𝜕𝑧
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and we have:

𝐷𝑥 = 𝜆11𝐸𝑥, 𝐷𝑧 = 𝑒31𝜖𝑥𝑥 + 𝜆33𝐸𝑧, (24)
𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑧
𝜕𝑧

= 0, (25)

where 𝜆11 and 𝜆33 are dielectric constants, 𝐷𝑥, 𝐷𝑧, 𝑒31, and 𝜓 show
the electric displacements, piezoelectric coefficient, and the electric
potential, respectively. 𝐸𝑥 and 𝐸𝑧 represent the components of the
lectric field. For the considered nanowire resonator, we suppose that
he electrical potential 𝜓 varies between −ℎ to ℎ across the height of
he nanowire. Accordingly, we can consider a uniform piezoelectric
istribution along the NW. It implies that 𝜓𝑥 ≪ 𝜓𝑧, therefore, we can
eglect the electric displacement 𝐷𝑥 in comparison with 𝐷𝑧. Based on

this assumption, Eq. (25) will be written in the following form:
𝜕𝐷𝑧
𝜕𝑧

= 0. (26)

We consider the following boundary conditions for the electrical poten-
tial distribution to solve the above differential equation and combine
the term related to the piezoelectric effect with the boundary conditions
for the vibrations of the nanowire:

𝜓(𝑥,−ℎ) = 0, 𝜓(𝑥, ℎ) = 2𝑉𝑒. (27)

Using Eqs. (11), (23), (24) and Eq. (26) and assuming the above
boundary conditions results in the following form of electrical potential
(derivation is provided in Appendix B) :

𝜓(𝑥, 𝑧) = −
𝑒31
𝜆33

(

𝑧2 − ℎ2
2

)

𝜕2𝑤
𝜕𝑥2

+
(

1 + 𝑧
ℎ

)

𝑉𝑒, (28)

where 𝑉𝑒 is the electric voltage [39]. The exerted axial load by piezo-
electric potential is obtained using the following equation:

𝑝𝑒 = 𝑏∫

ℎ

−ℎ
𝜎𝑥𝑥𝑑𝑧. (29)

Substituting Eqs. (23) and (28) into Eq. (11), and then into Eq. (29)
results in the following form of the axial load:

𝑝𝑒 = 2𝑉𝑒𝑏𝑒31. (30)

Combining Eq. (29), Eq. (18) and (21), the following equation is
obtained for the axial load, 𝑁 , indicated in Eq. (31):

= 𝑃𝑒 +
𝐸𝐴𝑒𝑓𝑓
2𝐿 ∫

𝐿

0

(

𝜕𝑤
𝜕𝑥

)2
𝑑𝑥 − 1

1 − 2𝑣
𝛼𝑥𝜃𝑡 + 2𝑏𝜏0. (31)

Turning to Fig. 1(a) and using the Newton’s law, we can write the
following formulation for the shear force applied to the nanowire:

𝜕𝑉
𝜕𝑥

= (𝜌𝐴)𝑒𝑓𝑓
𝜕2𝑤(𝑥, 𝑡)
𝜕𝑡2

+ 𝑚𝑝𝛿(𝑥 − 𝑥𝑝)
𝜕2𝑤(𝑥, 𝑡)
𝜕𝑡2

+

𝜇
𝜕𝑤(𝑥, 𝑡)
𝜕𝑡

+ 𝑘1𝑤(𝑥, 𝑡) + 𝑘3𝑤3(𝑥, 𝑡) − 𝐹 (𝑥, 𝑡) − 𝑓𝑒𝑚, (32)

where 𝜌, 𝑉 , 𝜇, 𝑚𝑝, 𝑥𝑝, 𝑘1 and 𝑘3 are density, shear force, damping
coefficient, particle mass, position of applied force, linear and nonlinear
Winkler coefficient, respectively. The terms 𝑘1𝑤(𝑥, 𝑡) and 𝑘3𝑤3(𝑥, 𝑡) are
the forces exerted to the nanowire resonator by the assumed linear and
nonlinear foundations, respectively. The term 𝑘3𝑤3 is a nonlinear part
of Eq. (32).

Substituting Eqs. (31) and (32) into Eq. (3), and then using Eq. (7),
results in the following governing equation for the vibrations of piezo-
electric nanowire considering an added mass:

(𝐸𝐼)𝑒𝑓𝑓
𝜕4𝑤
𝜕𝑥4

+
(

1 − 𝛤 𝜕2

𝜕𝑥2

)

𝛹 = 0, (33)

here

𝛹 = (𝜌𝐴)𝑒𝑓𝑓
𝜕2𝑤(𝑥, 𝑡)
𝜕𝑡2

+ 𝑚𝑝𝛿(𝑥 − 𝑥𝑝)
𝜕2𝑤(𝑥, 𝑡)
𝜕𝑡2

+

𝜕𝑤(𝑥, 𝑡)
+ 𝑘 𝑤(𝑥, 𝑡) − 2𝑏𝜏 𝜕2𝑤 + 𝑘 𝑤3(𝑥, 𝑡) − 𝐹 (𝑥, 𝑡) − 𝜁 𝐴𝐻2 𝜕2𝑤+
𝜕𝑡 1 0 𝜕𝑥2 3 𝑚 𝑥 𝜕𝑥2 o
2𝑉𝑒𝑏𝑒31
𝜕2𝑤
𝜕𝑥2

−
( (𝐸𝐴)𝑒𝑓𝑓

2𝐿 ∫

𝐿

0

(

𝜕𝑤
𝜕𝑥

)2

𝑑𝑥 −𝑁𝜃

)

𝜕2𝑤
𝜕𝑥2

, (34)

where the mathematical definition of the parameters used in the above
equation can be found in Appendix C [42]. In the above equation, 𝑘3𝑤3

and (𝐸𝐴)𝑒𝑓𝑓
2𝐿 ∫ 𝐿0 ( 𝜕𝑤𝜕𝑥 )

2𝑑𝑥 𝜕
2𝑤
𝜕𝑥2

are nonlinear terms. We need to develop the
dimensionless form of the above equation by defining the following
variables: 𝜉 = 𝑥

𝐿 , �̄� = 𝑤
𝐿 , 𝜏 = 𝜔𝑛𝑡. Considering these new variables,

Eqs. (33) and (34) are rewritten as follows:
𝜕4�̄�
𝜕𝜉4

+𝛱 𝜕2�̄�
𝜕𝜏2

− 𝛶𝛱 𝜕4�̄�
𝜕𝜏2𝜕𝜉2

+ 𝜅 𝜕
2�̄�
𝜕𝜏2

− 𝛶𝜅 𝜕4�̄�
𝜕𝜏2𝜕𝜉2

+ 𝛥𝜕�̄�
𝜕𝜏

(35)

−𝛥𝛶 𝜕3�̄�
𝜕𝜏𝜕𝜉2

+ 𝜓�̄� − 𝜓𝛶 𝜕
2�̄�
𝜕𝜉2

− 2
𝜏0
𝐿
𝜕2�̄�
𝜕𝜉2

+ 2𝛶
𝜏0
𝐿2

𝜕4�̄�
𝜕𝜉4

− 𝐹
(

𝜉
𝐿
, 𝜏
𝜔𝑛

)

+𝛶 𝜕2

𝜕𝜉2
𝐹
(

𝜉
𝐿
, 𝜏
𝜔𝑛

)

− 𝛬𝜕
2�̄�
𝜕𝜉2

+ 𝛶𝛬𝜕
4�̄�
𝜕𝜉4

− 𝛾1
𝜕2�̄�
𝜕𝜉2

+ 𝛶 𝛾1
𝜕4�̄�
𝜕𝜉4

+ 𝜓1𝑊 3

+𝛶 𝜕2

𝜕𝜉2
𝜓1�̄�

3 − 𝜓2

(

∫

1

0

(

𝜕�̄�
𝜕𝜉

)2

𝑑𝜉 +𝑁𝜃

)

𝜕2�̄�
𝜕𝜉2

+

𝜓2𝛶
𝜕2

𝜕𝜉2

(

∫

1

0

(

𝜕�̄�
𝜕𝜉

)2

𝑑𝜉 +𝑁𝜃

)

𝜕2�̄�
𝜕𝜉2

= 0,

where

𝛶 =
(

𝑒0𝑎
𝐿

)2

, 𝛱 =
𝐿(𝜌𝐴)𝑒𝑓𝑓𝜔2

𝑛

𝛬1
, 𝛬1 =

(𝐸𝐼)𝑒𝑓𝑓
𝐿3

, 𝛥 =
𝜇𝐿𝜔𝑛
𝛬1

,

𝜅 =
𝑚𝑝𝛿(1 −

𝑥𝑝
𝐿 )𝜔2

𝑛𝐿

𝛬1
, 𝜓 =

𝐾1𝐿
𝛬1

, 𝜓2 =
(𝐸𝐴)𝑒𝑓𝑓
𝛬1𝐿3

,

𝛬 =
𝜉𝐴𝐻2

𝑥
𝐿𝛬1

, 𝛾1 =
2𝑉 𝑏𝑒31
𝐿𝛬1

.

The obtained governing equation of the nanowire resonator will be
analyzed using perturbation techniques in the next section taking into
account a general form of the boundary conditions.

In order to analyze the oscillations of nanowire resonators and
obtain the primary resonance using MMS, the first step is to apply the
Galerkin method [44], which discretizes the time dependent part of
Eq. (35). Accordingly, we consider the following form for �̄� (𝜉, 𝜏) in
order to discretize Eq. (35) taking into account the primary mode of
nanowire oscillations [44]:

�̄� (𝜉, 𝜏) = 𝜙(𝜉)�̄�(𝜏), (36)

here 𝜙(𝜉) defines the dimensionless deflection shape of the beam
ased on the assumed boundary conditions. In Eq. (36), �̄�(𝜏) rep-
esents the dimensionless time dependent part of the oscillations of
anowires. Since our focus is on the vibration and frequency analysis
f nanowire resonators, we use the separation of variables to find the
ime dependent part of the developed model [44]. Using the Galerkin
ethod, we substitute Eq. (36) into Eq. (35) and then taking the inte-

ral from both sides of the equation, the following nonlinear ordinary
ifferential equation is obtained:

̈̄𝑢 +
𝛼1
𝛼0

̇̄𝑢 +
𝛼2
𝛼0
�̄� +

𝛼3
𝛼0
�̄�3 =

𝛼𝐹
𝛼0
𝑐𝑜𝑠

(

𝛺
𝜔𝑛
𝜏
)

, (37)

where details on 𝛼0, 𝛼1, 𝛼2, 𝛼3, and 𝛼𝐹 can be found in Appendix D. In
rder to analyze the Eq. (37), the Method of Multiple Scales [45] will
e employed in the next section. The main aim of using MMS is to find
he primary and other types of resonances of nanowire vibrations, and
hen to investigate the effect of different parameters on such vibrations.

. Implementation of MMS for nanowire resonators

In this section, we illustrate our method on the solution of Eq. (37)
or finding primary and super-harmonic resonance cases.

.1. Primary resonance

In order to solve Eq. (37), we first rewrite it with implementation

f small parameter 𝜖. Accordingly, we have the following nonlinear
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differential equation [46]:

̈̄ + 2𝜖�̄� ̇̄𝑢 + 𝜔2
𝑙 �̄� + 𝜖𝛽�̄�

3 = 𝜖𝑓𝑐𝑜𝑠(𝛺1𝜏), (38)

where 2�̄� = 𝛼1
𝛼0

, 𝜔2
𝑙 = 𝛼2

𝛼0
, 𝛽 = 𝛼3

𝛼0
, 𝑓 = 𝛼𝐹

𝛼0
, and 𝛺1 = 𝛺

𝜔𝑛
. For the

primary resonance case analysis of the nanowire resonator, modeled in
Section 2, the frequency of external excitation 𝛺1 should be approxi-
mately equal to that of natural frequency 𝜔𝑙 of the nanowire. Hence, to
elineate the nearness of 𝛺1 to 𝜔𝑙, one may use a detuning parameter
𝜎, and by using the dimensionless small parameter (𝜖) it can be written
as:

𝛺1 = 𝜔𝑙 + 𝜖𝜎. (39)

Now, we can expand �̄� as the following equation:

̄(𝜏, 𝜖) = �̄�0(𝑇0, 𝑇1) + 𝜖�̄�1(𝑇0, 𝑇1). (40)

Accordingly, by substituting Eq. (40) into Eq. (38), and then by separat-
ing the similar power of 𝜖, will result in the following set of differential
equations:

𝐷2
0 �̄�0 + 𝜔𝑙 �̄�0 = 0, (41)

𝐷2
0 �̄�1 + 𝜔𝑙 �̄�1 = −2𝐷0𝐷1�̄�0 − 2�̄��̄�0 − 𝛽�̄�30 + 𝑓 cos(𝜔𝑙𝑇0 + 𝜎𝑇1). (42)

he solution of Eq. (41) can be considered as:

0 = 𝐴(𝑇1, 𝑇2) exp(𝑖𝜔𝑙𝑇0) + �̄�(𝑇1, 𝑇2) exp(−𝑖𝜔𝑙𝑇0). (43)

By substituting Eq. (43) into Eq. (42), we obtain the following form of
equation:

𝐷2
0 �̄�1 + 𝜔𝑙 �̄�1 = −[2𝑖𝜔𝑙(𝐴′ + �̄�𝐴) + 3𝛽𝐴2�̄�] exp(𝑖𝜔𝑙𝑇0) (44)

−𝛽𝐴3 exp(3𝑖𝜔𝑙𝑇0) +
1
2
𝑓 exp[𝑖(𝜔𝑙𝑇0 + 𝜎𝑇1)] + 𝑐.𝑐. ,

here 𝑐.𝑐. stands for the complex conjugate terms. The term which con-
ains exp(𝑖𝜔𝑙𝑇0) is the secular term. In order to have a bounded solution,
he secular terms should be neglected as presented below [47]:

𝑖𝜔𝑙(𝐴′ + �̄�𝐴) + 3𝛽𝐴2�̄� − 1
2
𝑓 exp(𝑖𝜎𝑇1) = 0. (45)

Exerting 𝐴 = 𝑎
2 exp(𝑖𝐵) into Eq. (45) and separating the real and

imaginary parts, we obtain the following set of ordinary differential
equations:

𝑎′ = −�̄�𝑎 + 1
2
𝑓
𝜔𝑙

sin(𝜎𝑇1 − 𝐵), (46)

𝐵′ = 3
8
𝛽
𝜔𝑙
𝑎3 − 1

2
𝑓
𝜔𝑙

cos(𝜎𝑇1 − 𝐵). (47)

By defining �̄� = 𝜎𝑇1 − 𝐵, Eqs. (46) and (47) are rewritten as below:

𝑎′ = −�̄�𝑎 + 1
2
𝑓
𝜔𝑙

sin(�̄�), (48)

𝑎�̄�′ = 𝑎𝜎 + 3
8
𝛽
𝜔𝑙
𝑎3 − 1

2
𝑓
𝜔𝑙

cos(�̄�). (49)

We can find a steady state solution of the system of Eqs. (48)–(49)
by equating 𝑎′ and 𝜆′ to zero. We know that the amplitude and phase
of the system do not depend on the time and hence the time derivative
terms of both terms are equal to zero. Therefore, we can have the
following equations:

̄𝑎 = 1
2
𝑓
𝜔𝑙

sin(�̄�), (50)

nd

𝜎 − 3
8
𝛽
𝜔𝑙
𝑎3 = 1

2
𝑓
𝜔𝑙

cos(�̄�). (51)

Squaring and adding the above equations, the following closed-form
relationship is obtained [46]:
[

�̄�2 +
(

𝜎 − 3 𝛽
𝑎2
)2

]

𝑎2 =
𝑓 2

2
. (52)
8 𝜔𝑙 4𝜔𝑙
he above equation is 6th order polynomial in terms of 𝑎. It is also
a quadratic equation in terms of 𝜎. Solving the above equation for 𝜎,

e obtain the following form as the frequency response curve for the
q. (38):

= 3
8
𝛽
𝜔𝑙
𝑎2 ±

[

𝑓 2

4𝜔2
𝑙

− �̄�2
]

1
2

. (53)

The obtained relationship will be used in the next sections to quantify
the effect of different parameters on the primary resonance of the
nanowire resonator.

3.2. Super-harmonic resonance

The other resonance case that can be used for the sensitivity analysis
of the considered nanowire resonators is the super-harmonic resonance
case. The super-harmonic case occurs when 𝛺1 ≃ 1

3𝜔𝑙 [45]. This
esonance case can also be considered for finding the effect of the
dded mass on the frequency behavior of nanowire resonators. In
rder to assess this case, following [45], we define the super-harmonic
esonance case as:

𝛺1 = 𝜔𝑙 + 𝜖𝜎. (54)

e assume the solution of Eq. (37) in the following form [45]:

̄0 = 𝐴(𝑇1) exp(𝑖𝜔𝑙𝑇0) + 𝛤 exp(𝑖𝛺1𝑇0) + 𝑐.𝑐. (55)

ubstituting Eq. (55) into Eq. (37) results in:

𝐷2
0 �̄�1 + 𝜔𝑙 �̄�1 = −[2𝑖𝜔𝑙(𝐴′ + �̄�𝐴) + 3𝛽𝐴2�̄� + 6𝛽𝐴𝛤 2] exp(𝑖𝜔𝑙𝑇0) (56)

−𝛽[𝐴3 exp(3𝑖𝜔𝑙𝑇0)] + 𝛤 3 exp(3𝑖𝛺1𝑇0) + 3𝐴2𝛤 exp [𝑖(2𝜔𝑙 +𝛺1)𝑇0]

+3�̄�2𝛤 exp[𝑖(𝛺1 − 2𝜔𝑙)𝑇0] + 3𝐴𝛤 2 exp[𝑖(𝜔𝑙 + 2𝛺1)𝑇0]+

�̄�𝛤 2 exp[𝑖(𝜔𝑙 − 2𝛺1)𝑇0]] − 𝛤 [2𝑖�̄�𝛺1 + 3𝛽𝛤 2 + 6𝛼𝐴�̄�] exp(𝑖𝛺1𝑇0) + 𝑐.𝑐.,

where

𝛤 =
𝑓

2 × (𝜔2
𝑙 −𝛺

2
1)
. (57)

For this resonance case, we must follow the resonance condition as
below [45]:

3𝛺1𝑇0 = (𝜔𝑙 + 𝜖𝜎)𝑇0 = 𝜔𝑙𝑇0 + 𝜖𝜎𝑇0. (58)

Now, we can eliminate the secular and near secular terms in Eq. (56)
which leads to following equation:

2𝑖𝜔𝑙(𝐴′ + �̄�𝐴) + 6𝛽𝛤 2𝐴 + 3𝛽𝐴2�̄� + 𝛽𝛤 3 exp(𝑖𝜎𝑇1) = 0. (59)

sing 𝐴 = 𝑎
2 exp(𝑖𝐵) and separating the real and imaginary parts, we

obtain:

𝑎′ = −�̄�𝑎 − 𝛼𝛤 3

𝜔𝑙
sin(𝜎𝑇1 − 𝐵), (60)

𝐵′ =
3𝛽
𝜔𝑙

(

𝛤 2 + 1
8
𝑎2
)

𝑎 −
𝛽𝛤 3

𝜔𝑙
cos(𝜎𝑇1 − 𝐵). (61)

Using the defined �̄� for the primary resonance case, we obtain the
following equations:

𝑎′ = −�̄�𝑎 − 𝛼𝛤 3

𝜔𝑙
𝑠𝑖𝑛(�̄�), (62)

𝑎�̄�′ =
(

𝜎 −
3𝛽𝛤 2

𝜔𝑙

)

𝑎 −
3𝛽
8𝜔𝑙

𝑎3 −
𝛽𝛤 3

𝜔𝑙
cos(�̄�). (63)

We can find a steady state solution of Eqs. (62)–(63) by equating 𝑎′ and
𝜆′ to zero. Accordingly, the following set of equations is obtained:

̄𝑎 = −𝛼𝛤
3

𝜔𝑙
sin(�̄�), (64)

(

𝜎 −
3𝛽𝛤 2

𝜔𝑙

)

𝑎 =
3𝛽
8𝜔𝑙

𝑎3 +
𝛽𝛤 3

𝜔𝑙
cos(�̄�). (65)
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Eliminating �̄� in the above equations, the following closed form relation
can be obtained:
[

�̄�2 +
(

𝜎 − 3
𝛽𝛤 2

𝜔𝑙
−

3𝛽
8𝜔𝑙

𝑎2
)2]

𝑎2 =
𝛽2𝛤 6

𝜔2
𝑙

. (66)

olving the above equation based on the detuning parameter (𝜎) and
mplitude of oscillations (𝑎), we obtain the following closed form
elationship for the super-harmonic resonance case:

= 3
𝛽𝛤 2

𝜔𝑙
+

3𝛽
8𝜔𝑙

𝑎2 ±

√

𝛽2𝛤 6

𝜔2
𝑙 𝑎

2
− �̄�2. (67)

Following [45], the maximum amplitude for the case of super-harmonic
resonance can be found using the following formula:

𝑎𝑝 =
𝛽𝛤 3

�̄�𝜔𝑙
. (68)

Therefore, the super-harmonic resonance in the case of maximum
amplitude of oscillation is given as follows [45]:

𝜎𝑝 =
3𝛽𝛤 2

𝜔𝑙

[

1 +
𝛽𝛤 4

8�̄�2𝜔2
𝑙

]

. (69)

. Online parameter identification technique (OPIT)

In what follows, we treat the added mass 𝑚𝑝 as an unknown param-
ter of Eq. (37). Based on Eq. (37), we know that 𝑚𝑝 is defined by 𝛼0.
herefore, for the identification of 𝑚𝑝, we should first obtain 𝛼0. Using
q. (37), a linear parametric model is developed to estimate 𝛼0. It
hould be noted that we assume that 𝑢 is the only available measurable
ignal. In order to generate stable signal of �̇� and ü, we apply the stable
ilters of 𝑠

𝛥(𝑠) and 𝑠2

𝛥(𝑠) to signal 𝑢. With applying the considered low pass
ilter, the following linear parametric model is obtained [48]:

0 = 𝛼0𝜙0, (70)

here

0 =
1
𝛥(𝑠)

𝑧 − 𝛼1
1
𝛥(𝑠)

𝑢 − 𝛼2
𝑠
𝛥(𝑠)

𝑢 − 𝛼3
𝑠
𝛥(𝑠)

𝑢3, (71)

in which 𝑞0, 𝜙, 𝛥(𝑠), and 𝑧 are respectively, the measurable model
utput signal, regressor signal, stable second order polynomial, and
xternal force defined in Eq. (37). In accordance with the developed
inear parametric model, an on-line gradient-based parameter estimator
s proposed to estimate the actual value of 𝛼0 as follows:

0 = �̂�0𝜙0, (72)

0 =
𝛼0 − �̂�0
𝑚2
𝑠0

, 𝑚2
𝑠0

= 1 + 𝑘𝑠0𝜙
2
0, 𝑘𝑠0 > 0, (73)

in which �̂�0 characterizes the online estimated value of 𝛼0 and 𝜖0 is the
stimation error. Based on the adaptive gradient law and the developed
dentification method, we show that with the use of Eq. (37) and
easuring the displacement of nanowire, we can estimate the added
ass to it. In Section 5.3, we demonstrate the capability of the proposed
ethod for identifying tiny masses.

. Sensitivity analysis

In this section, we investigate the effect of different parameters on
he behavior of nanowire resonator with added mass considering both
inear and nonlinear vibrations in two different sections.

.1. Linear case

This section provides a sensitivity analysis of the effect of dif-
erent parameters on the vibration frequency of the nanowire res-
nator with simply supported boundary conditions in which �̄� (0, 𝜏) =
, 𝜕

2�̄� (0, 𝜏) = 0 at left end, and �̄� (1, 𝜏) = 0, 𝜕
2�̄� (1, 𝜏) = 0 at the right
𝜕𝜁2 𝜕𝜁2
Fig. 2. (Color online) Effect of the nonlocal parameter and added mass on the linear
frequency of the SiNW.

end of the beam. The shape function of the first mode is assumed as
𝜙(𝜉) = sin(𝜋𝜉). Based on Ref. [49], we consider the following sizes
for the nanowire: ℎ = 1 nm, 𝑏 = 3 nm and 𝐿 = 15 nm. In addition,
the properties of silicon nanowire was used for the simulations. Re-
garding the material of our nanoresonator, we use the properties of
silicon nanowire Figures of this section have been plotted based on the
dimensionless linear frequency of the nanowire resonator with respect
to dimensionless added mass. The dimensionless linear frequency is
defined by the following equation:

�̄� =
𝜔𝑙
𝜔0
, (74)

where 𝜔0 is the linear frequency of the nanowire resonator without
added mass and it can be obtained by using Eqs. (D.1) and (D.3). The
dimensionless mass �̄� is defined as below:

̄ =
𝑚𝑝
𝑚𝑛𝑤

, (75)

where 𝑚𝑝 and 𝑚𝑛𝑤 represent the masses of the added particle and
the nanowire, respectively. Fig. 2 shows the effect of dimensionless
nonlocal parameter ( 𝑒0𝑎𝐿 ) and added mass (�̄�) on the dimensionless
linear frequency. As the figure demonstrates, increasing the added
mass results in decreasing the frequency. In addition, the value of
frequency decreases by increasing the nonlocal parameter for a given
added mass. Fig. 3 represents the effect of temperature on the linear
frequency of the nanowire. Based on this figure, increasing temperature
results in decreasing the linear natural frequency for a given added
mass. Although temperature variations result in a small shift in the
frequency of the nanowire for a specific added mass, it may affect the
sensitivity of the nanowire resonator for small mass sensing such as
bio-objects, significantly.

The effect of piezoelectric voltage is presented in Fig. 4. As dis-
played by this figure, increasing the piezoelectric voltage decreases
the frequency of oscillations of nanowire resonator. In addition, it
shows that the piezoelectric voltage has a more pronounced effect on
the vibration behavior of the nanowire resonator in comparison with
thermal variations. This figure shows that the piezoelectric voltage
significantly changes the sensitivity of the nanowire resonator. Accord-
ingly, the frequency of the nanowire resonator can be adjusted by using
a specific piezoelectric voltage. The effect of magnetic field is presented
in Fig. 5. This figure shows that the magnetic field can be used for
increasing the natural frequency of the nanowire. Therefore, it can be
utilized as a design parameter to adjust the frequency of the nanowire
to a specific value required for a mass sensing application. It must
be noted that the effect of electromagnetic fields on the vibrations of
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Fig. 3. (Color online) Effect of the temperature [𝑜𝐾] variations and added mass on the
linear frequency of SiNW.

Fig. 4. (Color online) Effect of the piezoelectric voltage [V] and added mass on the
inear frequency of SiNW.

Fig. 5. (Color online) Effect of the magnetic field and added mass on the linear
frequency of SiNW.

resonators is not very big but it is considerable for sensing applications
with high precision. All of these figures show that adding a tiny mass to
a nanowire would result in a detectable frequency shift. This frequency
shift can be measured and used for detection of the added mass in the
case of experimental analysis.
Fig. 6. (Color online) Effect of the added mass on the primary resonance of SiNW.

5.2. Nonlinear vibration

In this part, we study nonlinear vibrations of the nanowire using
the obtained primary resonance in Section 3, accounting for simply
supported boundary conditions.

5.2.1. Primary resonance
Based on Eq. (53) developed in Section 3, we investigate the effect

of added mass on the primary resonance of nanowire resonators. Fig. 6
represents the effect of the added mass on the primary resonance
of nanowire resonators. As the figure shows, adding a small mass
(e.g., 𝑚𝑝 = 10−18𝑔) to the nanowire results in a detectable shift in the
jump frequency. This jump can be observed in the experimental analy-
sis [1]. This observation can be analyzed using the model developed in
this paper. It should be noted ultra-high mass sensing experiments are
generally performed in vacuum conditions to either alleviate or avoid
potential noises. Therefore, we can have the capability of parametric
sensitivity analysis of nanowire resonators both mathematically and
experimentally [50]. In addition, Fig. 6 demonstrates a high sensitivity
of the nanowire resonator to a very small mass. It affects both the jump
frequency and also amplitude of oscillations. Accordingly, it can be
concluded that nanowire resonators have a high potential for detection
of tiny particles such as bio-objects.

Fig. 7 shows the effect of thermal variations on the primary res-
onance of the nanowire resonator. As the figure presents, increas-
ing temperature results in increasing the amplitude of oscillations.
In fact, increasing temperature reduces the stiffness of the resonator,
and therefore, both amplitude of oscillations and the value of jump
frequency increase. Temperature fluctuation can limit the Q-factor of
nanoresonators and accordingly their sensing performance [51]. Study-
ing the temperature effect, as pictured in Fig. 7, results in having a
better control over the frequency behavior of nanowire resonators.
This analysis can help in designing feedback cooling with the aim
of mitigation of frequency fluctuations owing to temperature varia-
tions. Analogous results can be obtained when the piezoelectric voltage
increases (see Fig. 8). Increasing the piezoelectric voltage results in
increasing the amplitude of oscillations and also the value of the jump
frequency. Accordingly, these two parameters can be used for adjusting
the amplitude and the jump frequency of the nanowire resonator. In
many practical situations of sensing, it is important to consider the
effect of these two parameters in measurements as they affect both
vibration amplitude and also frequency. The effect of electromagnetic
fields is presented in Fig. 9 based on the obtained primary resonance
in Section 3. As the figure demonstrates, increasing the value of the
magnetic field reduces the value of jump frequency of the nanowire
resonator. In addition, the value of amplitude of oscillations of the
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Fig. 7. (Color online) Effect of the temperature [𝑜𝐾] variations on the primary
resonance of the SiNW.

Fig. 8. (Color online)Effect of the piezoelectric voltage [𝑉 ] on the primary resonance
of SiNW.

Fig. 9. (Color online) Effect of the magnetic field on the primary resonance of SiNW.

nanowire resonator decreases with increasing the value of the magnetic
field.

5.2.2. Super-harmonic resonance
In this section, we focus on the super-harmonic resonance case of

our silicon nanowire resonator and the effect of different parameters
on the peak amplitude defined by Eq. (68) and its corresponding 𝜎𝑝
obtained in Eq. (69). All figures of this section are obtained based
Fig. 10. (Color online) Effect of temperature on the peak amplitude and the detuning
parameter of the super-harmonic resonance of SiNW.

on Eq. (68) and (69) with simply supported boundary conditions. In
these figures, the blue and green lines are related to the amplitude of
oscillations and super-harmonic resonance, respectively. Furthermore,
the natural frequency (𝜔𝑙) is approximately equal to 66.6 GHz. Fig. 10
shows the effect of temperature variations on both dimensionless peak
amplitude (𝑎𝑝) and its corresponding detuning parameter (𝜎𝑝). The
corresponding values are obtained for four different temperatures: 𝑇 =
273, 300, 350, and 450 ◦𝐾 [52]. Based on this figure, the detuning
parameter of the super-harmonic resonance, 𝜎𝑝, is 5.38 𝐺𝐻𝑧 at the
temperature of 425 ◦𝐾. The corresponding amplitude of oscillations, 𝑎𝑝,
is 0.25 𝑛𝑚. As the figure demonstrates, increasing environmental tem-
perature increases both 𝑎𝑝 and 𝜎𝑝. Therefore, not only we can look at
the primary resonance to understand the behavior of the nanowire un-
der thermal variations, but also, we can investigate the super-harmonic
resonance as an alternative approach for understanding the response
of the nanowire resonator under different thermal conditions. As it
was expected both primary and super-harmonic resonance cases show
similar behaviors under thermal loads.

Fig. 11 reveals the effect of magnetic field on the super-harmonic
resonance of nanowire resonators. The figure shows the relation of
both 𝑎𝑝 and 𝜎𝑝 to the variation of magnetic flux density for the super-
harmonic resonance case. Similar to the primary resonance, increasing
the magnetic flux density decreases both 𝑎𝑝 and 𝜎𝑝. It should be noted
that �̄�𝑥 represents the dimensionless form of the magnetic flux density.

Fig. 12 shows the effect of piezoelectric voltage on both 𝑎𝑝 and
𝜎𝑝. As the figure depicts, increasing the piezoelectric voltage enhances
both 𝑎𝑝 and 𝜎𝑝 of the nanowire resonator.

5.3. Discussion based on OPIT

By using OPIT, it has been shown that the proposed model can be
used to find a tiny mass rested on the nanowire resonator. Fig. 13
represents the results of identification technique based on the proposed
mathematical model. As the figure demonstrates, we can identify the
added mass even on the order of 10−21 Kg using the nanowire resonator
for a short period of time. In Fig. 13, blue and red lines represent the
estimated and actual masses, respectively.

6. Molecular dynamics simulation

In order to investigate the potential of nanowire resonators for the
detection of biological objects, we use MD simulations to analyze the
frequency response of nanowire resonators after adding an HIV virus as
an example. This methodology, which has also been applied recently
in the context of RNA nanostructures and other complex biological
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Fig. 11. (Color online) Effect of magnetic field on the peak amplitude and the detuning
parameter of the super-harmonic resonance of SiNW.

Fig. 12. (Color online) Effect of piezoelectric voltage on the peak amplitude and the
super-harmonic resonance of SiNW.

Fig. 13. (Color online) Online Identification of Added Mass.

systems [53–56], is much more computationally time consuming, com-
pared to the methodologies based on continuum models. At the same
time, the MD methodology has been used in the development of new
Fig. 14. Nanowire resonator with attached mass (HIV virus) at 𝑇 = 300 ◦K.

atomistic-to-continuum models for tiny biological structures [57]. Here,
we locate an HIV virus in the middle of the nanowire resonator as
shown in Fig. 14. We first examine the nanowire resonator without an
added HIV molecule and obtain its frequency, for this case, by using MD
simulations as 43.63 GHz. After adding the molecule of HIV virus, using
the higher amplitude peak as a Ref. [58], it has been concluded that
the frequency of SiNW resonator decreases to 21.81 GHz, as presented
in Fig. 15(b).

7. Conclusions

In this paper, we presented a novel mathematical model for the vi-
bration of nanowire resonators with an added mass taking into account
critical parameters. With the implementation of the Euler–Bernoulli
beam theory in conjunction with the Eringen nonlocal theory, a non-
linear model was developed to study the vibrations of nanowire res-
onators, considering surface and thermal effects, as well as the effects of
electromagnetic fields, piezoelectric potential, external load, nonlinear
foundation, added mass and large oscillations. The obtained governing
equation for the vibrations of nanowire resonators was solved by an
analytical technique. In order to obtain an analytical solution for the
vibrations of nanowires, the method of multiple scales was used to find
primary and super-harmonic resonances of the device. Based on the
obtained information, we then investigated the frequency shift due to
the tiny added mass to the nanowire resonator. In addition, using the
developed primary and super-harmonic resonance cases, the effect of
different key parameters, such as thermal variations, electromagnetic
fields, and the piezoelectric potential, on the vibration behavior of
nanowire resonator was studied. The main concluding remarks based
on the presented perturbation analysis and developed model are as
follows:

• It is shown that the nanowire resonator is capable of detecting
tiny masses even in the order of zeptogram. As the mass of added
particle increases, the frequency of nanowire resonator reduces.

• Increasing temperature and piezoelectric voltage reduces the fre-
quency of nanowire resonator. It means that when the nanowire
resonator is used for tiny mass sensing applications, temperature
and piezoelectric potential should be monitored.

• It is observed that increasing electromagnetic fields enhances the
stiffness and also frequency of nanowire resonators. This is also
another important factor that should be taken into account for
designing nanowire resonators in sensing applications.

One of the directions of future studies can include the molecular
dynamics simulations of nanowire resonators taking into account all
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Fig. 15. Nanowire resonator with attached mass (HIV virus) at 𝑇 = 300 ◦K.
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effects considered in the developed mathematical model. A complete
stability analysis of such nanowire resonators would also present sub-
stantial interest for future research. In order to carry out such an
analysis, the developed model can be extended by using a time de-
pendent temperature and taking piezoelectric functions into account as
𝜃𝑡 = 𝜃0 + 𝜃1 cos(𝜔𝜃𝑡)𝑝𝑒 = 2(𝑉𝑒0 + 𝑉𝑒1 cos(𝜔𝑝𝑡))𝑏𝑒31.
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Appendix A. Mathematical procedure for finding the electromag-
netic field

To include the electromagnetic field effect into the governing equa-
tions of nanowire resonators, based on the Maxwell equations [59,60],
we have the following set of equations in the Cartesian coordinates,
(𝑥, 𝑦, 𝑧), as presented in Fig. 1(a):

𝐽 = ∇ × ℎ𝑚, (A.1)

∇ × 𝑒𝑚 = 𝜁𝑚
𝜕ℎ𝑚
𝜕𝑡

, (A.2)

∇ ⋅ ℎ𝑚 = 0, (A.3)

𝑒 = −𝜁 𝜕𝑈 ×𝐻 , (A.4)
𝑚 𝑚 𝜕𝑡 𝑚
ℎ𝑚 = ∇ × (𝑈 ×𝐻𝑚), (A.5)

where 𝐽 , 𝑒𝑚, ℎ𝑚, 𝑈 and 𝜁𝑚 represent current density, strength vectors
of electric field, disturbing vectors of magnetic field, the vectors of
displacement, and the magnetic permeability, respectively. In order to
obtain the magnetic field, which applies the transverse force to the
nanowire, we first consider the general case of 𝑈 = (𝑢, 𝑣,𝑤) as the
displacement vector. Accordingly, we assume a longitudinal magnetic
field vector as 𝐻𝑚 = (𝐻𝑥, 0, 0). Therefore, we obtain:

ℎ𝑚 = ∇ × (𝑈 ×𝐻𝑚) = −𝐻𝑥

(

𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑥

)

𝑖 +𝐻𝑥
𝜕𝑣
𝜕𝑥
𝑗 +𝐻𝑥

𝜕𝑤
𝜕𝑥

�̂� (A.6)

nd

= ∇ × ℎ𝑚 = 𝐻𝑥

(

𝜕2𝑣
𝜕𝑥𝜕𝑧

+ 𝜕2𝑣
𝜕𝑥𝜕𝑦

)

𝑖 −𝐻𝑥

(

𝜕2𝑣
𝜕𝑦𝜕𝑧

+ 𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑧2

)

𝑗

+ 𝐻𝑥

(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑦𝜕𝑧

)

�̂�. (A.7)

The Lorentz force 𝑓𝐿 exerted by the longitudinal magnetic field is
obtained by using the following equation [59,60]:

𝑓𝐿 = 𝜁𝑚(𝐽 ×𝐻𝑚) = 𝜁𝑚

[

0𝑖+𝐻2
𝑥

(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑦𝜕𝑧

)

𝑗+𝐻2
𝑥

(

𝜕2𝑤
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑦2

+ 𝜕2𝑣
𝜕𝑦𝜕𝑧

)

�̂�
]

.

(A.8)

Therefore, the components of Lorentz force in x,y, and z directions are
defined as follows:

𝑓𝑥 = 0, (A.9)

𝑓𝑦 = 𝜁𝑚𝐻
2
𝑥

(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑦𝜕𝑧

)

, (A.10)

𝑧 = 𝜁𝑚𝐻
2
𝑥

(

𝜕2𝑤
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑦2

+ 𝜕2𝑣
𝜕𝑦𝜕𝑧

)

. (A.11)

e note also that within the developed modeling framework, more
efined models for nanowires can potentially be used that account for
lectronic and enhanced coupled properties [61–64], as well as various
ypes of novel resonators with memory effects can be explored [65,66].

ppendix B. Representation of piezoelectric potential

Substituting Eq. (24) into Eq. (26) yields the following partial
ifferential equation:
𝜕(𝑒31𝜖𝑥𝑥)

𝜕𝑧
+ 𝜆33

𝜕𝐸𝑧
𝜕𝑧

= 0. (B.1)

Using Eq. (23) we will have:

𝑒
𝜕𝜖𝑥𝑥 − 𝜆

𝜕2𝜓
= 0. (B.2)
31 𝜕𝑧 33 𝜕𝑧2
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Implementing Eq. (2) to Eq. (B.2) results in a relationship as follows:

𝑒31
[ 𝜕
𝜕𝑧

( 𝜕𝑢
𝜕𝑥

− 𝑧 𝜕
2𝑤
𝜕𝑥2

+ 1
2
( 𝜕𝑤
𝜕𝑥

)2
)]

− 𝜆33
𝜕2𝜓
𝜕𝑧2

= 0. (B.3)

In Eq. (B.3), the 𝜕𝑢
𝜕𝑥 and 1

2 (
𝜕𝑤
𝜕𝑥 )

2 terms will be omitted. Therefore, this
equation (Eq. (B.3)) can be rearranged to take the following form:

𝜕2𝜓
𝜕𝑧2

= −
𝑒31
𝜆33

𝜕2𝑤
𝜕𝑥2

. (B.4)

In order to solve the above-mentioned partial differential equation, we
take the integral from both sides of it, which results in the following:

𝜓(𝑥, 𝑧) −
𝑒31
2𝜆33

𝑧2 𝜕
2𝑤
𝜕𝑥2

+ 𝐶1𝑧 + 𝐶2, (B.5)

where 𝐶1 and 𝐶2 are the constants of integration. For the purpose of
obtaining 𝐶1 and 𝐶2, we apply the boundary conditions as provided in
Eq. (27). Thus, we will have the following form of equations:

−
𝑒31
2𝜆33

𝜕2𝑤
𝜕𝑥2

(−ℎ)2 + 𝐶1(−ℎ) + 𝐶2 = 0, (B.6)

and

−
𝑒31
2𝜆33

𝜕2𝑤
𝜕𝑥2

(ℎ)2 + 𝐶1(ℎ) + 𝐶2 = 2𝑉𝑒. (B.7)

Based on Eq. (B.6) we have:

𝐶2 =
𝑒31
2𝜆33

𝜕2𝑤
𝜕𝑥2

ℎ2 + 𝐶1ℎ. (B.8)

By substituting Eq. (B.8) into Eq. (B.7) we obtain the following rela-
tionship for 𝐶1:

𝐶1 =
𝑉𝑒
ℎ
. (B.9)

Now, we plug 𝐶1 and 𝐶2, obtained in Eqs. (B.8) and (B.9), in Eq. (B.5)
which results in a relationship for the piezoelectric potential as follows:

𝜓(𝑥, 𝑧) = −
𝑒31
𝜆33

( 𝑧2 − ℎ2
2

) 𝜕2𝑤
𝜕𝑥2

+
(

1 + 𝑧
ℎ

)

𝑣. (B.10)

ppendix C. Parameters in Eqs. (33) and (34)

The parameters in Eqs. (33) and (34) are defined as follows:

𝜌𝐴)𝑒𝑓𝑓 = 𝜌𝐴 + 2𝑏𝜌0, (C.1)

𝐸𝐼)𝑒𝑓𝑓 = 𝐸𝐼 + 2𝐸𝑠 + 4𝐸𝑠 ℎ
3

3
− 𝑣𝐼

𝜏0
ℎ

+
2𝑏𝑒231ℎ

3

3𝜆33
, (C.2)

𝐸𝐴)𝑒𝑓𝑓 = 𝐸𝑏ℎ + 2𝐸𝑠(𝑏 + ℎ), (C.3)

(𝑥, 𝑡) = 𝐹𝛿(𝑥 − 𝑥𝑝)𝑐𝑜𝑠(𝛺𝑡), (C.4)

𝜃 =
1

1 − 2𝑣
𝛼𝑥𝜃𝑡. (C.5)

Appendix D. Coefficients of eq. (37)
The coefficients of Eq. (37) can be obtained by the following inte-

grals:

𝛼0 = 𝛱(∫

1

0
𝜙2(𝜉)𝑑𝜉 − 𝛶 ∫

1

0
𝜙′′(𝜉)𝜙(𝜉)𝑑𝜉) +

𝜅(∫

1

0
𝜙2(𝜉)𝑑𝜉 − 𝛶 ∫

1

0
𝜙′′(𝜉)𝜙(𝜉)𝑑𝜉), (D.1)

𝛼1 = 𝛥(∫

1

0
𝜙2(𝜉)𝑑𝜉 − 𝛶 ∫

1

0
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here 𝛿 is the Dirac function.
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