
Parameter optimization of the bio-inspired robot propulsion through the 
deep learning based reduced order fluid-structure interaction model 

Zixiang Ying a, Linxiang Wang a,*, Roderick Melnik b 

a State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, PR China 
b MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON, N2L 3L5, Canada   

A R T I C L E  I N F O   

Keywords: 
Bio-inspired locomotion 
Fluid-structure interaction 
Reduced order modeling 
Proper orthogonal decomposition 
Neural networks 

A B S T R A C T   

In this paper, an effective model (POD-NIROM) is proposed, which makes full use of Long short-term memory 
Neural Network (LSTM NN) and proper orthogonal decomposition (POD) to predict the fluid dynamics around 
the moving boundary, as well as the soft robot locomotion. This is the first time that the proposed model has been 
used to optimize the propulsion parameters of the robotic fish, in which the body stiffness of the robot has been 
taken into consideration. To discuss the reliability of the presented model, the prediction and simulation of robot 
swimming performance are compared with experimental measurements, the results show a consistent trend. 
Finally, the trained model is used to optimize the robot’s propulsion parameters. The results show that the robot 
has the best propulsion speed and propulsion force when the dimensionless wavenumber k̃ is about 0.7. 
Compared with the high-fidelity model, the average relative standard deviation of the present model is 2.60%, 
but the calculation cost is reduced by 99.4%. Reasonable prediction and efficient calculation make the proposed 
POD-NIROM has great potential in the process of bio-inspired robot swimming prediction or bio-inspired robot 
propulsion parameter optimization.   

1. Introduction 

The locomotion of fish has the advantage of being fast, flexible and 
noiseless, which attracts great interest in submarine robotics design 
(Triantafyllou and Triantafyllou, 1995). Underwater bionic technology 
has received attention and has become one of the important research 
directions of underwater vehicles, such as snake-like robots (Porez et al., 
2014), jellyfish-inspired robots (Christianson et al., 2019), robotic fish 
(Bergmann and Iollo, 2011; Katzschmann et al., 2014), 
surface-swimming robots (Long et al., 2011a, 2011b), dolphin-like robot 
(Shen et al., 2013). However, the propulsion efficiency of the current 
bionic robotic fish is significantly lower than that of natural fish 
(Nguyen et al., 2012), which has aroused widespread attention to the 
optimization of underwater robot propulsion efficiency. 

The computational fluid dynamics (CFD) method is widely used to 
predict the propulsion motion of robotic fish or the flow field around the 
robot (Bergmann and Iollo, 2011; Phamduy et al., 2016). Generally, a 
high-fidelity model using the CFD method can obtain a convincing so-
lution when predicting the relationship between the fluctuation of the 
underwater vehicle and the external propulsion movement. Quick 

response is necessary for models applied to optimization or path plan-
ning (Porez et al., 2014; Marchese et al., 2014). However, the nonline-
arity of these equations, accompanied by high computational cost, 
makes it difficult for the model to achieve fast simulation. 

A commonly used method to reduce computational cost in the 
simulation of soft underwater robots is to ignore the influence of fluid 
resistance on the lateral fluctuation amplitude of the robot. In other 
words, simplify the robot’s swimming to rigid body motion (Bergmann 
and Iollo, 2011; Borazjani and Sotiropoulos, 2009). However, biological 
studies have shown that the internal parameters of underwater robots, 
especially body stiffness, strongly affect their swimming performance 
(Tytell et al., 2010). In contrast, the solution of a high-fidelity model that 
considers the stiffness of the robot’s body is more valuable. 

The reduced order model (ROM) is a commonly used method to 
obtain a reasonable approximation by constructing a low-dimensional 
subspace. The ROM can efficiently simulate physical and dynamic sys-
tems while maintaining reasonable accuracy, more specifically, retain-
ing the main characteristics of the solution state vector (Schilders et al., 
2008). These characteristics are sufficient to describe soft robot swim-
ming, which is a two-way fluid-solid coupling problem. 
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The ROM has been applied to various fields, for example, wake flows 
(Phamduy et al., 2016; Stankiewicz et al., 2016), shallow water (R ă 
zvan et al., 2014; Lozovskiy et al., 2016), and ocean modeling (Fang 
et al., 2013; Z et al., 2016). Proper orthogonal decomposition (POD) is 
one of the most commonly used methods in building the ROM. It is a 
modal decomposition method designed to identify the most important 
flow features used to reconstruct snapshots (Tu et al., 2013). POD is used 
firstly in the field of fluid mechanics, to find the most contributing POD 
modes (a POD mode includes the POD space mode and the corre-
sponding POD temporal coefficient) in a turbulent flow (Lumley, 1967). 
Since then, the POD method has been widely used in various applica-
tions of fluid mechanics, such as swirling flow Applications (Drag-
omirescu et al., 2013), control of the Burgers equation (Perrin et al., 
2006), rarefied gas flows (Zhao et al., 2020), and turbulent flow in a 
square duct (Reichert et al., 1994). Simultaneously, it is a mature 
technique using the POD method to extract the characteristics of the 
Karman vortex street in the case of the cylinder wake (Zhao et al., 2019; 
Erwan and Hamdouni, 2010; Erwan et al., 2007). 

The POD-Galerkin method is a POD-based intrusive ROM (POD- 
IROM) using Galerkin Projection to project governing equations to 
obtain ordinary differential governing equations (Eivazi et al., 2020). 
And new cases with varied parameter combinations (varied initial 
conditions) can be predicted. When using POD-IROM, many physical 
characteristics are retained, but it also brings challenges to model sta-
bility and nonlinear efficiency (Schlegel et al., 2015). POD-IROM is 
bound to the control equations and a new model must be established if 
the control strategy changes (Xiao et al., 2013). Fortunately, the 
POD-based non-intrusive ROM (POD-NIROM) has been proposed and 
used for flow field control (Kherad et al., 2020). The predictability of 
NIROM is achieved by a neural network framework. When optimizing 
the parameters for controlling the robot undulation, it is necessary to 
predict the underwater motion of the robot under various initial con-
ditions. The prediction function of the POD-Galerkin method is realized 
by the ordinary differential governing equations. Once the initial con-
ditions are changed, the coefficient matrixes of the equations need to be 
reassembled. In contrast, POD-NIROM has a lower computational cost, 
considering that, in POD-NIROM, different initial conditions correspond 
to different input signals and the neural network framework itself is 
unchanged. 

Recently, efficient algorithms based on deep learning (Videler and 
Wardle, 1991) to predict fluid evolution have emerged. DL has been 
used to learn airflow characteristics on fixed aerodynamic structures for 
geometric optimization (Storti et al., 2019). In addition, deep learning is 
also used for Reynolds average turbulence modeling (Ling et al., 2016) 
and active flow control strategies (Rabault et al., 2019). Among them, 
long and short-term memory (LSTM), as a type of DL, has shown 
attractive potential in the modeling of fluid mechanics (Srinivasan et al., 
2019) and has been successfully deployed to construct the NIROM 
(Mohan and Gaitonde, 2018). In brief, as the critical technology of the 
NIROM, DL can enhance the advantages of the ROM in shape optimi-
zation and flow control. In the POD-NIROM proposed in this paper, the 
LSTM framework plays the role of predicting the evolution of the POD 
temporal coefficients, taking the initial displacement of the robot 
(without considering hydrodynamics yet) as input. 

Although POD-NIROM has great potential, its application in the 
prediction of bio-inspired robot swimming performance is still limited. 
Currently, this algorithm is very popular in aerodynamics researches, 
such as unsteady aerodynamic and aeroelastic modeling (Lee et al., 
2019), inviscid transonic flow past an airfoil (Renganathan et al., 2020), 
aero-elastic interaction (Halder et al., 2020). It is worth mentioning that 
the theory of fish swimming and the theory of airfoil vibration have 
something in common. For example, the proposal of the kinematics for 
carangiform and anguilliform swimmers was inspired by the slender 
body theory in the field of aerodynamics (Wu, 1961). As has been 
proven effective in aerodynamics, POD NIROM is also seen as a prom-
ising avenue to predict the performance of swimmers. 

In this work, a fast and effective algorithm is introduced to optimize 
the driving parameters of the underwater robot. The main idea of this 
algorithm is to use the POD method to reconstruct the dimensionality 
reduction model which is used to solve the bidirectional fluid-structure 
coupling problem of soft underwater vehicle motion and use LSTM to 
predict the POD modes used to reconstruct the model. In addition, the 
stiffness of the robot is taken into consideration, when predicting the 
swimming of the robot, which is a parameter that affects the swimming 
performance of the robot. Here, the robot is regarded as a uniform linear 
elastic body, and its elastic modulus reflects the difference between the 
actual swimming amplitude of the robot and the input signal. Finally, 
the trained model is used to optimize the robot’s propulsion parameters, 
where the forward swimming speed and the propulsion force are the 
optimization indicators. 

The rest of this article is organized as follows. Numerical methods 
used to predict robot swimming performance are introduced in Section 
2. In Section 3, the details of model construction, as well as several 
important parameters and indicators are resented. In Section 4, the 
experimental measurement, HF model simulation, and present model 
prediction are compared to verify the reliability of the present model, 
and the robot swimming performance, as well as the swimming effi-
ciency, are discussed. 

2. Methodology 

2.1. Dataset and POD 

In this work, a 2D high-fidelity model (HF model) is considered to 
simulate the incompressible fluid around the moving deformable body. 
As discussed in existing research, the fish-like swimmer will turn (or the 
robot does not swim along the negative x-axis, in current cases) when 
starting up (in the form of the S-start) from rest (Gray, 1953). Addi-
tionally, fish have a good orientation when swimming upstream (Webb, 
1984). To keep the robot swimming in a straight line, in the current HF 
model, the robot starts up against the current with a constant fluid ve-
locity U = 0.1m/s. The start up process lasted for 0.5s, which means U =

0 when t ≥ 0.5s. In the discussion of the following sections, the swim-
ming cycles are counted after the start up process (e.g. [0T − 1T) corre-
sponds to [0.5s, 1.35s), U = 0 for all swimming cycles). The boundary 
conditions on the outer boundary are uniform inflow at the inlet (the 
inlet normal velocity U), the sliding wall on the side boundary (no-slip 
boundary condition applied), and the convection boundary conditions at 
the outlet. The computational domain (Fig. 1 (B)) is a 10L × 2L (L is the 
body length of the robot) rectangle with 15267 nodes and 27707 
triangular elements. Fig. 1 shows a schematic description of the flow 
configuration. In Fig. 1, Ω = Ωf ∪ ΩI is the entire computational domain. 
Ωf is the fluid domain. ΩI is the domain of the self-propelling object 
(fish-like swimmer) that provides the undulation motion d0 regarded as 
the initial grid displacement upon the moving boundary of the fluid. For 
simplicity, Ω will be taken to be a rectangle, with an outer boundary 
ΓO = Γi ∪ Γo ∪ Γw1 ∪ Γw2. ni,no, nw1, nw2 are the outward normal of Ω, 
nI is the outward normal of ΩI. 

In the high-fidelity model, the fluid is governed by the incompress-
ible Navier–Stokes equations described by Arbitrary Lagrangian- 
Eulerian (ALE) formulation: 

ρf u̇+ ρf (u ⋅∇)(u − q̇)= − ∇p+ μ∇⋅
(
∇u+∇uT) in Ωf (1)  

∇ ⋅ u = 0, in Ωf (2)  

where u is the flow velocity, and q is the grid displacement. The frac-
tional step method (Chorin, 1967; Zhao et al., 2007; Bao et al., 2011) is 
used for the time discretization of the momentum equation (Eq. (1)). The 
Streamline upwind Petrov-Galerkin finite element method (Brooks and 
Hughes, 1982; Choi and Yoo, 1997) is used for spatial discretization of 
the momentum equation. The mesh displacement of the fluid domain (q 
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in Ωf ) is described by a modified version of the Laplace mesh motion 
algorithm (Masud and Hughes, 1997; Masud et al., 2007; Wang et al., 
2014). The mesh displacement of the robot motion (q in ΩI) is consistent 
with the robot displacement (urob in ΩI). And the displacement of the 
robot (urob in ΩI) is obtained by calculating the equilibrium equation of 
the linear elastic body: 

ρI ürob =∇⋅σI + Fex in ΩI (3)  

σI ⋅ nI =
(
− ∇p+ μ∇ ⋅

(
∇u+∇uT))⋅nI on ΓI (4)  

where ρI is the density of the self-propelling object, σI is the Cauchy 
stress tensor, Fex(t) = D∇d0(t) represents the time-varying external load 
(which is the energy source that drives the undulations of the robot), D is 
the elasticity matrix containing the material properties for ΩI, d0(t) is 
the desired shape motion of the robot specified in Eq. (4). When solving 
Eq. (3), the Newton-Raphson method is introduced for iteration 
(Deuflhard, 2006) and the Generalized Hooke’s Law is used for the 
construction of the linear elastic material model (Necas and Hlavacek, 
1981). For simplicity, the elasticity of the soft robot body or joints is 
represented in the current model as the average body stiffness E and the 
Poisson’s ratio ν. 

The solution state vector s(x, t) for the HF model (describing the 
fluid-solid interaction problem) is obtained by using the staggered al-
gorithm (Wang et al., 2014; Mohamed et al., 2021; Placzek et al., 2009; 

Persillon and Braza, 1998; Farhat et al., 1997). The steps of this algo-
rithm can be described as: (i) update the boundary condition of the robot 
(Eq. (4)), based on the solution state vector s(tn) at tn; (ii) update the 
external load Fex(tn) at tn (Eq. (5)); (iii) calculate the displacement of the 
robot us(tn+1) by solving Eq. (3); (iv) update the mesh configuration 
q(tn+1) based on the mesh motion algorithm; (v) solve the Navier–Stokes 
equations (Eqs. (1) and (2)) on the updated mesh configuration to get 
the solution state vector s(tn+1) at tn+1; (vi) return to (i). The current HF 
model is executed with the software FreeFem++ (Hecht, 2012). MAT-
LAB is used for LSTM network model building (Kim and Kim, 2017) and 
data visualization. 

The instantaneous axis of the robot is a traveling wave with 
increasing amplitude from fish head to fishtail (Gray, 2020). As 
described in the Lighthill propulsion model (Videler and Hess, 1984), 
the desired shape motion of the robot d0(t) = (0, d0

y) is given as follows: 

d0
y (ξ, t)=A(ξ)sin(kξ+ σt) (5)  

where ξ is the axial length measured along the instantaneous axis (also 
known as a local coordinate, with ξ = 0 at the head and ξ = L at the tail), 
A(ξ) is the envelope function defining the maximum lateral displace-
ment, k is the wavenumber, and σ is the angular frequency. Some co-
efficients are defined as follows: 

A(ξ)=A0 + A1ξ + A2ξ2 (6) 

Fig. 1. (A) Sketch of the computational domain. (B) Mesh division of the computational domain. (C)–(D) Zoom-in view of the mesh near the head and tail, where the 
fluid and the robot are represented in black and blue, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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k = 2πk̃ (7)  

σ = 2πf (8)  

k̃ =
L
λ

(9)  

where the coefficients A0 = 0.1512, A1 = 0 and A2 = 0 are defined to 
match the cases where the desired oscillating amplitude of each joint is 
35◦ (Porez et al., 2014), the result is shown in Fig. 2(A) (the body wave 
fitting technique is used to estimate swimming kinematic parameters 
matched to the oscillation of the link-based body (Liu and Hu, 2010; Yu 
et al., 2004)), k̃ is the dimensionless wavenumber, f = 0.8 is the un-
dulating frequency of the robot, L = 0.88m is the body length of the 
robot, λ is the wavelength of the body undulations. Furthermore, an 
appropriate robot stiffness E (details in Section 2.3) is chosen in the HF 
model to make the simulation consistent with the experiment. Intui-
tively, the envelope of the desired shape motion of the robot A(ξ) (also 
the input of the POD-NIROM) and the envelope of the robot’s lateral 
undulation are shown in Fig. 2(B). 

Consider a space Ω⊂Rd with D = 1, 2,3, x ∈ Ω. D is the dimension 
tied to space. And the time is denoted by t ∈ T, where T⊂ R. In a Hilbert 
space H, the solution state vector s(x, t) ∈ H(Ω, T), which includes the 
flow state variables and grid displacement, is solved by the HF model 
simulation. The solution state vector s(x, t) and the standard inner 
product of s(x, t) are given by: 

s(x, t) =

⎡

⎣
qi(x, t)
ui(x, t)
p(x, t)

⎤

⎦ i= 1, 2 (10)  

(s(x1, t1), s(x2, t2))=

∫

Ω

s(x1, t1)⋅s(x2, t2)dΩ (11) 

Given snapshots of the ith solution state vector si(x, t) = {si(x, t1),…,

si(x,tn)}, si can either be the mesh deformation field qi, the velocity field 
ui or the pressure field p. Let Ysi = span{si(x, t1),…, si(x, tn)}, and nsi =

dim(Ysi ). rsi is the reduced number of POD space modes (Φsi ) for si. Ei-
genmodes set obtained by solving the maximum likelihood estimation 
problem: 

max
ψsi ∈H

(si,ψsi )
2

(ψsi ,ψsi )
=max

Φsi

∑

rsi

(si,Φsi )
2

(Φsi ,Φsi )
(12)  

where 〈 ⋅〉 denotes a statistically average operator. The solution to Eq. 
(12) is provided by the set of left singular vectors Ysi (Ysi )

H, and the POD 
space mode Φsi can be obtained by performing singular value 

decomposition on Ysi (Ysi )
H (): 

(
Ysi (Ysi )

H
− λsi I

)
Φsi = 0 (13)  

where the Ysi (Ysi )
H is a nsi × nsi order real symmetric matrix. However, 

when the spatial dispersion is too large, especially when rsi ≪nsi , Eq. (13) 
is a large-scale eigenvalue problem, and it is inefficient to solve. In this 
regard, a snapshot POD method (Sirovich, 1987) is proposed to reduce 
the degree of freedom of the eigenvalue problem to rsi , that is, solve the 
following eigenvalue problem: 

(Ysi )
HYsi Φsi − Φsi Λsi = 0 (14) 

Then, the set of POD space modes Φsi can be obtained. By using 
Reynolds decomposition, si can be represented by rsi POD modes: 

si(x, t) ≈ si(x)+ s
′

i(x, t, θ)= si(x) +
∑rsi

j=1
asi

j (t)Φsi
j (x) (15)  

where asi
j (t) are POD temporal coefficients for si, si(x) represent the time 

average term, and s′i(x, t, θ) represents the fluctuating part extracted as a 
linear combination of POD space modes Φsi (x) and POD temporal co-
efficients asi

j (t) (Erwan and Hamdouni, 2010). 

2.2. LSTM for POD-NIROM methodology 

The selected POD modes have high energy content and are used to 
construct a low-dimensional subspace of the solution state vector s(x, t). 
Substituting Eq. (14) into the bidirectional fluid-solid coupling equa-
tions and taking the POD space modes Φsi as the shape functions, then 
weighted integrating the equations over the computational domain, the 
reduced order ordinary differential equations (ODEs) are obtained. The 
ODEs can be rewritten in the general form by Eq. (16): 

Fj

(

äqi
j , ȧqi

j , a
qi
j , ȧui

j , aui
j , a

pi
j , t, d

0
i

⃒
⃒

ΓI

)

= 0 (16)  

where ȧqi
j and äqi

j represent the first and second derivatives of aqi
j (POD 

temporal coefficients corresponding to the desired shape motion of the 

robot d0
i

⃒
⃒
⃒
ΓI 

on ΓI) with respect to time t, respectively. And ȧui
j represents 

the first derivative of aui
j (POD temporal coefficients for fluid velocity ui) 

with respect to time t. 
As it performs well in nonlinear dimensionality reduction and 

sequential data learning, LSTM deep learning methods are used to 
construct the function F j. The function F j is used to approximate the 
function Fj in Eq. (16), where the POD temporal coefficients of the 
selected POD space modes are determined. The LSTM neural network 

Fig. 2. (A) Joint oscillating amplitude that matches 
the coefficients (A0 = 0.1512, A1 = 0, and A2 = 0). 
(B) The lateral displacement envelope of the robot. 
The red line indicates the input (the envelope of the 
desired shape motion of the robot), the black markers 
represent the experiment, and the blue line represents 
the envelope of robot undulation predicted by POD- 
NIROM (taking the red line as input). (For interpre-
tation of the references to colour in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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was proposed by Hochreiter in 1997 (Hochreiter and Schmidhuber, 
1997). And the input gate it, the cell state ct, the forget gate ft, and the 
output gate ot are the four components of the single LSTM neural 
network cell. The cell state ct contains the input and the state preserved 
from the previous unit. The input gate it controls the transmission of the 
information from the input to the cell state at the current moment. The 
forget gate ft controls the state preserved from the cell at the previous 
moment to the current moment. The output gate ot controls the infor-
mation sent to other nodes. The updated cell state ̃ct describes the output 
of the previous unit and the input of the current unit. The schematic of 
the LSTM Layer architecture and a single LSTM cell structure are shown 
in Fig. 3(B)(C). 

In the LSTM neural network, the forward pass equations can be used 
to calculate the mapping from the input x = (x1,…, xNt) to the output 
h = (h1,…, hNt). The compact forms of the equations are given as fol-
lows: 

ft = σ
(

[Wfh Wfx ]

[
ht− 1
xt

]

+ bf

)

(17)  

it = σ
(

[Wih Wix ]

[
ht− 1
xt

]

+ bi

)

(18)  

c̃t = tanh
(

[Wch Wcx ]

[
ht− 1
xt

]

+ bc

)

(19)  

ct = ft∘ct− 1 + it∘c̃t (20)  

ot = σ
(

[Woh Wox ]

[
ht− 1
xt

]

+ bo

)

(21)  

ht = ot∘tanh(ct) (22)  

where t indexes the time step, xt ∈ Rx is the input vector to the LSTM 
unit, ht ∈ Rh the hidden state vector (or called the output vector of the 
LSTM unit), c̃t ∈ Rh is the updated cell state, and ct ∈ Rc = Rh is called 
cell state vector. it ∈ Rh, ft ∈ Rh, and ot ∈ Rh denote the input, forget, 

and output gate’s activation vectors, respectively. b ∈ Rh is the bias 
vector, W denotes the weight matrices (e.g. Wf =

[
Wfh Wfx

]
∈ Rc×(h+x)

is the weight matrix used to calculate the forget gate’s activation vector 
ft). σ is the sigmoid function, ◦ is the Hadamard product, and the initial 
values c0 = 0 and h0 = 0. 

The structure of the POD-NIROM used in this work is shown in Fig. 3 
(A). In this work, the input of the LSTM neural network is the desired 

shape motion of the robot d0
⃒
⃒
⃒
ΓI

. And the outputs are the POD temporal 

coefficients predicted by the LSTM model ãsi
n (t). 

The construction and prediction of NIROM can be summarized as 
follows:  

(1) Define a series of cases with various wavenumber k̃ = [k̃1, k̃2,…,

k̃Nk ]. Calculate the desired shape motion of the robot for each case 

d0
j (t; k̃)

⃒
⃒
⃒
ΓI

.  

(2) Obtain the solution state vector for each case s(x, t; k̃) through the 
HF model simulation.  

(3) Obtain the POD bases Φsi
j (x) by performing POD on the solution 

state vector sj(x, t; k̃). And project the solution state vector onto 
each POD base to get the POD temporal coefficients asi

j (t; k̃) for 
each case.  

(4) Generate the training cases with various wavenumber k̃tr = [k̃1,

k̃2, …, k̃Ntr ]. Use time-series d0
j (t; k̃tr)

⃒
⃒
⃒
ΓI 

as input data and time 

series asi
j (t; k̃tr) as output, train the LSTM neural network.  

(5) Generate the test cases with various wavenumber ̃kte = [k̃1, k̃2,…,

k̃Nte ]. Treat the LSTM neural network as a function, F j(asi
j ,d

0
j

⃒
⃒
⃒
ΓI
)

= 0. Using the LSTM neural network, take the time series 

d0
j (t; k̃te)

⃒
⃒
⃒
ΓI 

as input, calculate the predicted POD temporal co-

efficients ãsi
j (t; k̃te) and compare it with the POD temporal 

Fig. 3. Illustrate the proposed NIROM. (A) POD- 
NIROM Methodology. (B) The schematic of the 
LSTM NN architecture, the blue rectangle in Fig. 3(A). 
(C) The schematic of a single LSTM cell structure, the 
red rectangle in Fig. 3(B). First, the input is obtained 
according to the robot swimming kinematics. Then 
the LSTM NN is used to predict the POD temporal 
coefficients. Then, the predicted POD temporal co-
efficients are combined with the POD space modes to 
reconstruct the predicted solution state vector. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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coefficients asi
j (t; k̃te) generated by the projection of the solution 

state vector sj(x, t; k̃te) on the POD bases Φsi
j (x).  

(6) Use the predicted value of POD temporal coefficients ãsi
j (t; k̃te)

and the POD bases Φsi
j (x) to reconstruct the predicted value of the 

solution-state vector ̃sj(x, t; k̃te) using Eq. (15). 

2.3. Validation of the HF model 

The mesh convergence analysis is performed, to obtain a reliable 
dynamic simulation. Three different meshing strategies were applied to 
the present HF model, precisely 12379 elements, 27707 elements, and 
43299 elements. The current model is simulated using a mesh with 
27707 elements since the simulation tends to converge. Fig. 4(E) depicts 
the time series of the forward swimming speed of the robotic fish (when 
k̃ = 1). 

In addition, multiple simulations show that, in the case with k̃ = 1, 
when the body stiffness of the robot is E = 0.7MPa and the Poisson’s 
ratio is ν = 0.3 (considered in Eq. (3) basing on the Generalized Hooke’s 
Law), the simulation results agree well with the experimental mea-
surements. Fig. 4(A)–4(D) presents the motion of the forward swimming 
robot relative to the fluid during a swimming cycle (between 3T and 4T, 
when the time average hydrodynamic force acting on the robot is 
approximately zero). The experimental and the numerical simulation 
result of Porez et al. (2014) are used as a reference, of which the body 
axis are represented by red circles and blue dotted lines, respectively. At 
the same time, the black dashed line represents the contour line of the 
robot calculated by the present HF model. It can be seen that compared 
to the experimental results, the current HF model can provide a reliable 
data set for building the POD-NIROM. 

3. Construction of POD-based non-intrusive ROMs 

As depicted in Fig. 5(A), the forward swimming case was simulated 
for all 61 cases with various dimensionless wavenumber ̃kε[0.4,1.6]. For 
each case, snapshots are taken every 20 time-steps dt = 20Δt = 0.05s 
during tε[0, 10] in seconds. Consequently, each set has a total of 201 
snapshots, while each swing cycle covers 20 snapshots and the number 
of snapshots for all 61 cases is 12261. The Hold-out method is used to 

divide the data set. Considering the insufficient number of samples in the 
data set, to verify the stability, the partition was repeated 20 times, 
shown in Fig. 5(B). 

The finite element error in the energy norm (L2 norm) is used to 
estimate the error of reconstructing the data set using POD (Erwan et al., 
2007; Sirovich, 1987; Haas and Zandbergen, 1996). The normalized 
reconstruction error in L2 form εsi is defined as: 

εsi = 1 −

∑Nsi
r

i=1 λsi
i

∑Nsi

i=1 λsi
i

(23)  

where Nsi
r is the number of POD modes used, which is much smaller than 

the total POD modes Nsi . The reconstruction error of the energy captured 
by different amounts of POD modes is shown in Fig. 6. Consequently, to 
make POD-NIROM contain 99.8% of the energy, Nr = [Nu

r ,Nv
r ,N

p
r ,Nx

r ,

Ny
r ] = [60, 60,60,10,10] out of N = [Nu,Nv,Np,Nx,Ny] =

[12261,12261,12261, 12261,12261] are reserved for ROM, and the 
corresponding reconstruction error ε = [εu, εv, εp, εx, εy] = [1.9 × 10− 2,

1.1 × 10− 2,8.35 × 10− 6,1.38 × 10− 6,4.68 × 10− 4]. 
The average value sj and two POD space modes Φsj

i (i = 2,5) of the 
solution state vector si(x, t) with N = 12261 snapshots are illustrated in 
Fig. 8. 

Fig. 5(C) shows the verification error (loss function) of the LSTM 
neural network vs epochs. The verification method was repeated 20 
times, and the training set and the test set are split as shown in Fig. 5(B). 
The half mean squared error (HMSE), used as the loss function for neural 
network training, is defined as follows, 

HMSE=
1

2Nt

∑Nt

i

∑Nr

j

(
ãij − aij

)2 (24)  

where Nt is the sequence length, which in this study is the number of 
snapshots for each case, Nt = 201, Nr is the number of responses, that is, 
the number of POD modes used, Nr = 200, ãij is the network’s prediction 
and aij is the target output. The loss function can be highly variable, and 
depends on whether the partition of the data set is sufficiently uniform. 
The average curve of the MSE indicates that after about 900 epochs, the 
validation will stabilize. Another metric for error estimation, is the co-
efficient of determination (R2), which is defined as follows, 

R2 = 1 −
∑Nt

i

∑Nr

j

(
ãij − aij

)2

/
∑Nt

i

∑Nr

j

(
ȧij − aij

)2 (25)  

where ȧij is the time average of the target POD temporal coefficients. R2 

is between zero and one. Fig. 5(D) depicts the R2 obtained from the test 
set. It can be seen that the R2 obtained for the test set does not appear 
unstable and the predicted POD temporal coefficients ãsi

j (t; kte) have 
been calculated with acceptable accuracy. The 9th partition with the best 
R2 is adopted. 

4. Results and discussion 

The HF model simulation of 61 cases took 284025s in total. When 
building the PODNIROM model, the solution state vector imports and its 
POD analysis took 362s, and then training the neural network took 
1343s. Finally, using PODNIROM to predict 61 cases, it took 156s in 
total. All processes are carried out on the AMD Ryzen Thread Ripper 
1950X 16-Core Processor 3.40 GHz. It can be seen that POD-NIROM 
greatly reduces the calculation cost of robot propulsion parameter 
optimization. The response speed of POD-NIROM online prediction is 
1820 times that of HF model simulation. The calculation cost of the 
whole process of POD-NIROM (including offline calculation and online 
prediction) is 0.6% of the HF model simulation. 

The forward swimming process of the robot fish predicted by POD- 
Fig. 4. The robot’s straightforward swimming. (A) t = 3T, (B) t = 3.25T, (C) 
t = 3.5T, (D) t = 4T, (E) swimming speed at the center of the robot (from t =
0T to t = 8T). 
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NIROM is compared with the experiment. The cases shown in Fig. 5(A) 
are all calculated when k̃ = 1.0. 

The input of POD-NIROM, that is, the time series of d0
n(t), at ̃k = 1.0 is 

shown in Fig. 7. For convenience, only the nodes near the head of the 
robot ([x, y] = [0.02m, 0.02m], node No.110 node), the nodes near the 
tail ([x,y] = [0.8737m,0.0012m], No. 254 node), and the nodes near the 
center of gravity ([x,y] = [0.442m,0.02m], No. 171 node) are displayed. 

Taking d0
n

⃒
⃒
⃒
ΓI 

at ̃k = 1.0 as input, the prediction result of POD-NIROM 

is shown in Fig. 8(⋅4). Each POD temporal coefficient has been de- 
normalized since the normalized data is used in the model. In this 
case, the present model gives a reliable prediction. In the selection of the 
rank of truncation Nr, both the reconstruction error ε and the frequency 
of the POD temporal coefficient are taken into consideration to avoid the 
distortion of the prediction result caused by the excessively high fre-
quency of the POD temporal coefficient. The case where the prediction 
of the POD temporal coefficient is contaminated with higher frequencies 
has been discussed by Eivazi et al. (2020). 

The POD result on the flow field (Fig. 8) shows that the first few 
energy-favored POD modes (taking the second and fifth POD spatial 

bases as examples, Φsj
i (i = 2,5)) captured wake vortex features are 

mostly behind the tail within a body length. Considering that the POD 
spatial modes are ordered according to energy, that is, when moving 
forward, the swimmer’s influence on the fluid is mainly concentrated 
near the body and within a body length range behind. 

In this case, the predicted value of the solution state vector ̃sj(x, t; kte)

is reconstructed using Eq. (15). The performance of the flow charac-
teristics captured by POD-NIROM is shown in Fig. 9(A)(B). Consistent 
with the swimmers that use body/caudal fin (BCF) undulations for 
propulsion (Bergmann and Iollo, 2011; Borazjani and Sotiropoulos, 
2008), the wake generated by the robot (Fig. 9) has the characteristics of 
the thrust-indicative reversed Kaman vortex street (Jones and Platzer, 
1997). Fig. 9(A)(B) also shows the velocity vectors and the vortex con-
tour of the flow around the robot in the last prediction step (t = 8T), 
calculated by the HF model and predicted by the POD-NIROM, respec-
tively. It is worth mentioning that the farther away from the robot in the 
backward direction, the fewer wake vortex features. This is caused by 
the selection of a small number of POD modes, meanwhile, the calcu-
lation cost is reduced. 

The comparison of POD-NIROM results, HF model results, and 

Fig. 5. Schematic of the parameters and training results of POD-NIROM. (A) The dimensionless wavenumber of each case. (B) 20 partition schemes of the training set 
and the test set. (C) Validation loss vs epochs for 20 partition schemes. (D) The coefficient of determination for 20 partition schemes. 

Fig. 6. The reconstruction error of the energy associated with the POD modes. (A) Velocity in the x-direction (red line), Velocity in the y-direction (blue line), 
pressure (black line). (B) Grid displacement in the x-direction (red line), grid displacement in the y-direction (black line). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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experimental results on a series of robot swimming snapshots sampled in 
a swimming cycle are displayed in Fig. 9(C)–9(F). In Fig. 9(C), the first 
snapshot, the robot’s center of gravity obtained by the three methods is 
overlapped. At the same time, the robot head of the experimental result 
is taken as the zero, snapshots are captured every 0.25T, a good match is 
observed. And the POD-NIROM with [Nx

r ,N
y
r ] = [10, 10] can convincingly 

predict the deformation of the grid, especially the displacement on the 
fluid-solid coupling boundary, which is the movement of the robot. 

To compare the lateral undulation amplitude of the robot predicted 
by the POD-NIROM with the experimental results more intuitively, the 
forward displacement of the robot is calculated. In a swimming cycle 
starting from 3T, the forward displacement at the center of the robot is 
shown in Fig. 10(B). It can be seen that the prediction of POD-NIROM is 
consistent with the experiment. 

In this case, with respect to the body length Lb, the time series of the 
velocity of forwarding swimming v′ is presented in Fig. 10(A). It can be 
seen that after 4 swimming cycles (4T), the forward swimming speed of 
the robot tends to be stable. In the 4 swimming cycles from t = 4T (from 
4T to 8T), the time average of the velocity (v′HF = − 0.476 Lb/s and 
v′POD = − 0.468 Lb/s) are calculated. To illustrate the dependence of the 
swimming performance of the robot on the dimensionless wavenumber 
k̃, the variation of the robot’s average forward swimming speed v′

(k̃)
(Average of the 8 swimming cycles, during 0 − 8T) is plotted in Fig. 10 
(C). The prediction in Fig. 10(C) shows that the maximum time average 
velocity (max(v′

) = − 0.58 Lb/s) is reached, when ̃k = 0.75. Compared 
with the experiment, the error of the simulation is composed as follows: 
(i) to ensure the robot swims along the negative direction of the x-axis, 
the start up process (described in Section 2.1) is performed before 
starting to count swimming cycles (before 0T, in other words, t < 0.5s); 

(ii) the 2D assumption made judging from the domain dimensions is 
applied to simulate and predict the swimming performance of the robot; 
(iii) for simplicity, the assumption of homogeneous material is used in 
the current simulations and predictions, but in the experiments, the 
robot is designed as a series of rigid links connected with soft joints. 

In the HF model, the robot swims in the negative x direction, and the 
component of the instantaneous hydrodynamic force in the x-direction 
acting on the robot (FHF) is calculated as follows: 

FHF(t) =
∫

ΓI

(
− pnx + τxxnx + τxyny

)
dΓI (26)  

τxx = 2μux (27)  

τxy = μuy + μvx (28)  

where [nx, ny]
T is the unit normal vector on the fluid-structure coupling 

interface dΓI, τij is the ij component of the viscous stress tensor. 
Substituting Eq. (15) into Eqs. (26–28), then FPOD is obtained: 

FPOD(t) =
∫

ΓI

(

−

(

p+
∑rp

j=1
ap

j (t)Φ
p
j

)

nx + 2μ
(

u+
∑ru

j=1
au

j (t)
(

Φu
j

)

x

)

nx

+ μ
(

u+
∑ru

j=1
au

j (t)
(

Φu
j

)

y

)

ny + μ
(

v+
∑rv

j=1
av

j (t)
(

Φv
j

)

x

)

ny

)

dΓI

(29) 

FHF and FPOD are shown in Fig. 11(A). It can be found that after 4 
swimming cycles (4T), the hydrodynamic force received by the robot 
tends to be stable, which is consistent with the findings from Fig. 11(A). 

Fig. 7. Schematic of POD-NIROM input at k̃ = 1.0. (A⋅) The robot head. (B⋅) The robot tail. (C⋅) The centroid of the robot. (⋅1) Three-dimensional schematic (one- 
dimensional time, two-dimensional space). (⋅2) Schematic in the x-direction. (⋅3) Schematic in the y-direction. 
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It should be noted that the robot is swimming along the negative di-
rection of the x-axis, that is to say, when F < 0, the instantaneous hy-
drodynamic force provides thrust for the robot. Conversely, when F > 0, 
the instantaneous hydrodynamic force provides resistance for the robot. 
It can be found that in each swimming cycle, the instantaneous hydro-
dynamic force has 2 strokes (forward tail stroke and backward tail 
stroke), which is consistent with the experimental observations (Videler 
and Hess, 1984). Moreover, the prediction of POD-NIROM is in agree-
ment with the HF simulation. 

To illustrate the dependence of the swimming performance of the 
robot on the dimensionless wavenumber k̃, the variation of the robot’s 
average thrust Th(k̃) (average value of 4 swimming cycles starting from 
t = 4T, during 4T − 8T) is plotted in Fig. 11(B). Considering that when 
the swimming speed of the robot tends to be stable, the time average 
value of the hydrodynamic force in each swimming cycle tends to be 0. 

For comparison, the hydrodynamic force FHF(t) is proposed to be 
decompose into thrust (the force that the robot receives in the same 
direction as the robot’s forward motion) ThHF(t) and drag (the force on 
the robot in the opposite direction to the forward motion of the robot) 
DrHF(t) (Borazjani and Sotiropoulos, 2008): 

ThHF(t)=
1
2
FHF(t) +

1
2

⎛

⎝

⃒
⃒
⃒
⃒
⃒
⃒

∫

ΓI

− pnxdΓI

⃒
⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
⃒

∫

ΓI

(
τxxnx + τxyny

)
dΓI

⃒
⃒
⃒
⃒
⃒
⃒

⎞

⎠ (30)  

DrHF(t) = −
1
2

FHF(t) +
1
2

⎛

⎝

⃒
⃒
⃒
⃒
⃒
⃒

∫

ΓI

− pnxdΓI

⃒
⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
⃒

∫

ΓI

(
τxxnx + τxyny

)
dΓI

⃒
⃒
⃒
⃒
⃒
⃒

⎞

⎠ (31) 

Substituting Eq. (15) into Eq. (30), then ThPOD is obtained: 

Fig. 8. Illustration of POD modes. (A⋅) POD space base: velocity in the x-direction. (B⋅) POD space base: velocity in the y-direction. (C⋅) POD space base: pressure. 
(D⋅) POD space base: grid displacement in the x-direction. (E⋅) POD space base: grid displacement in the y-direction. (⋅1) Time average. (⋅2) The second POD space 
base. (⋅3) The fifth POD space base. (⋅4) schematic of the POD temporal coefficient at k̃ = 1.0. The data has been de-normalized. The solid line represents the 
reference data and the dotted line represents the prediction. 
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Fig. 9. Snapshot of the robot’s straightforward swimming in a swimming cycle at k̃ = 1.0. The schematics of the velocity vector and vortex contour at t = 8T 
calculated by the HF model and the POD-NIROM are displayed in (A) and (B) respectively. (C)–(F) present the snapshots of the robot’s straightforward swimming in a 
swimming cycle at t = 3T (C), t = 3.25T (D), t = 3.5T (E), and t = 4T (F). 

Fig. 10. Time history of the forward swimming performance at the center of the robot. (A) The forward swimming velocity (k̃ = 1.0), (B) the forward displacement 
between 3T and 4T (k̃ = 1.0), (C) the average forward swimming speed for varies k̃. It is worth mentioning that the robot swims along the negative direction of the 
x-axis. 
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ThPOD(t) =
1
2

FPOD(t) +
1
2

⃒
⃒
⃒
⃒
⃒
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)

x

)
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)
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⃒
⃒
⃒
⃒
⃒

(32) 

On the one hand, as shown in Fig. 10(C), the maximum time average 
velocity (max(v′

) = − 0.58 Lb/s) is reached when k̃ = 0.75. Simulta-
neously, the peak of the time average propulsion force (max(Th) = −

3.58 N/m) appears when k̃ = 0.62 (see Fig. 11(B)). 
On the other hand, as shown in Figs. 10(C), 61 POD-NIROM pre-

dictions and the corresponding 61 HF model’s simulations are compared 
with 5 sets of experiments. The comparison shows that the prediction of 
POD-NIROM has a consistent trend with the experimental measurement. 
The body stiffness of the predicted robot does not match the experiment 
is the main reason for the inconsistency between the prediction and the 
simulation in Fig. 10(C), beyond the truncation error when constructing 
the POD-NIROM and the error in the experiment. Due to the lack of data, 
when defining the body stiffness of the robot, only the measurement 
when k̃ = 1 is referred to. Therefore, the error between prediction and 
measurement when k̃ = 1 is significantly smaller than in other cases. 

Note that when comparing the POD-NIROM prediction with the HF 
model simulation, the difference in the time average propulsion force h 
(see Fig. 11(B)) is larger than the time average speed v′ (see Fig. 10(C)). 
The calculation of v′ uses some POD modes (si, asi

j and Φsi
j when si = x,

y), which mainly reflects the truncation error εx, εy and the prediction 
error of ax and ay. However, the equation of Th (see Eq. (30)) uses all the 
POD modes (si, asi

j and Φsi
j when si = u,v,p,x, y). The difference between 

Th’s prediction and simulation, indicating all truncation errors of the 
ROM and the prediction error of all POD temporal coefficients, is 
described by the relative standard deviation (RSD). Fig. 11 (C) describes 
the RSD of Th, which shows the maximum max(RSD) = 4.67% and the 
average RSD = 2.60%. The results show that the proposed POD-NIROM 
can predict quickly and reliably for cases where k̃ is within the range 
covered by the training set (k̃ε[0.4,1.6]). 

5. Conclusion 

In this paper, an effective model (POD-NIROM) is proposed, which 
makes full use of Long short-term memory Neural Network (LSTM NN) 
and proper orthogonal decomposition (POD) to predict the solution state 
vector of the two-way fluid-structure interaction problem. And the 
proposed POD-NIROM takes into account the body stiffness (described 
by elastic modulus), which is an important internal parameter of the 
robot when predicting the underwater swimming performance of the 
robot. The predictions of the proposed POD-NIROM are more valuable 
than the model that regard the robot swimming underwater as a rigid 
body motion. This is the first time that the proposed model has been 
used to optimize the propulsion parameters of an underwater vehicle, in 
which the body stiffness of the robot has been taken into consideration. 

Compared with the HF model, the proposed POD-NIROM has a lower 
computational cost when a large number of simulations (for robot 
parameter optimization), or fast predictions (for robot propulsion con-
trol) are required. Based on the POD method, 200 groups of POD modes 
(extracted from 61305 groups) are extracted from the solution state 
vector for the construction of the reduced-order model. To reduce the 
difficulty of constructing the proposed model, the deep learning algo-
rithm is introduced to predict the evolution of POD time coefficients 
(instead of the Galerkin projection scheme). The prediction and simu-
lation of robot swimming performance are compared with experimental 
measurements. The results show that the lateral undulation and forward 

Fig. 11. The instantaneous force on the robot during forward swimming. (A) The instantaneous hydrodynamic force (k̃ = 1.0), (B) the average thrust for varies ̃k, (C) 
the error of the average thrust between the POD-NIRON prediction and the simulation of the HF model. 
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swimming of the robot in the prediction and simulation have a consis-
tent trend with the experiment. 

The time average propulsion is also presented. The maximum value 
of the relative standard deviation (RSD) between the POD NIROM pre-
diction and the HF model simulation is 4.67%, and the average value is 
2.60%. Simultaneously, the dimensionless wavenumber of the robot 
body used for propelling is optimized. It is found that for various 
dimensionless wavenumber, the time-averaged propulsion force and the 
time-averaged speed have a consistent trend. And there is a dimen-
sionless wavenumber that makes the robot’s average thrust and robot 
average forward swimming speed reach the maximum, at the same time. 

These results prove that the prediction of the proposed POD-NIROM 
is reliable and fast, which highlights the generalization ability of deep 
learning neural networks and is of great significance to the research of 
the optimization of bio-inspired robots. 

Data availability 

The code and parameter settings of the POD-NIROM proposed in this 
paper are available through the link: https://github.com/AX1ANG 
/PODNIROM. 
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