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a b s t r a c t

The human brain is the most complicated biological structure on the planet. A major challenge of
brain network modelling lies in its multi-scale spatio-temporal nature, covering scales from synapses
to the whole brain. The coupled multiphysics and biochemical activities which spread through such a
complex system shape brain capacity inside a structure-function relationship that requires a particular
mathematical framework. Next-generation coupled-based mathematical modelling approaches to brain
networks and the analysis of data-driven dynamical systems are needed to advance state-of-the-art
therapeutic strategies for treating neurodegenerative diseases (NDDs) that affect millions of people
worldwide, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Importantly, AD is marked
by the presence of amyloid-beta (Aβ) plaques and tau (τ ) proteins. Some disease-specific misfolded
proteins can interact with healthy proteins to form long chains and aggregates of different sizes
that have different transport properties and toxicity. An improved large-scale brain network model is
proposed here to understand the pathogenesis of AD, especially the role of astrocytes in the presence
of misfolded proteins (Aβ and τ ). The idea involves astrocytic clearance, which assists in eliminating
toxic Aβ via fragmentation. We use the general Smoluchowski theory of nucleation, aggregation, and
fragmentation to predict the development and propagation of aggregates of misfolded proteins in the
brain. It has been shown that the developed model leads to different size distributions and propagation
along the network. We predicted that astrocytic clearance varies with the aggregate size, which is key
to slowing down AD progression. The clearance and fragmentation of toxic proteins span several spatial
and temporal scales, and this research will potentially yield new insight into the associated processes
and brain networks in health and disease. Detailed multi-scale brain modelling provides a promising
approach for consolidating, organizing, and bridging the data sets of data-driven brain network models.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The network architecture of the human brain has attracted
he attention of the neuroscientific community due to its ability
o shed light on human cognition, its variation during develop-
ent and ageing, and its modification in disease or injury [1]. A
uman brain comprises around 100 billion neurons coupled by
pproximately 100 trillion synapses that are physically structured
cross various spatial dimensions and functionally interacting
ver many temporal scales [2]. Researchers have found that dis-
rete populations of neurons support cognition and behaviour,
nd individual brain areas have progressively given rise to the
nderstanding that connectivity matters [3–6]. The realization
hat large-scale brain networks are inherently multi-scale struc-
ures is one of the most recent advances [1]. To determine which
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combinations of interacting regions are possible, it is necessary to
identify the brain areas that compose structural network nodes
and the connecting pathways that function as structural network
edges.

In recent years, mathematical and computational methods
have paved the way towards a much better understanding of
brain functional connectivity [7,8]. It is known that neurodegen-
erative diseases (NDDs) involve large networks, and we need to
reduce such large networks to make them feasible for a more
detailed analysis. Functional interactions in the brain are con-
strained by the underlying anatomical architecture, and structural
and functional networks share network features such as modular-
ity [9,10]. Furthermore, understanding brain geometry by map-
ping its functional and structural associations has been rapidly
developing, generating enormous interest [11]. Interestingly, neu-
roscientists employ network science methods to represent the
brain as a network and a mathematical representation of data
ideally suited for investigating complex systems [12,13]. Con-
nectomics and graph theory provide an effective paradigm for
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apping, monitoring, and predicting disease spread patterns in
rain diseases [14,15]. The therapeutic importance of brain net-
ork hubs is one major insight that has already been made
ith the remarkable consistency of MRI connectomics [16,17]. It
as been demonstrated that in Alzheimer’s disease (AD), high-
egree nodes in functional MRI graphs have more local deposition
f amyloid protein (measured via PET) than less topologically
entral brain areas [18]. Importantly, NDDs represent a heteroge-
eous group of diseases characterized by progressive structural
nd functional degeneration of the central and peripheral ner-
ous systems [19]. Throughout growth, the healthy human brain
uilds a series of large-scale, dispersed, function-critical neu-
al networks. NDDs are thought to focus on these networks,
ut this hypothesis has not been systematically tested in living
umans [20]. Biomarkers in NDDs and their integration into mod-
lling procedures have risen as an important tool for shedding
ight on the pathophysiology of NDDs. The pathophysiology of
DDs is still debated, and there is an urgent need to under-
tand the mechanisms behind the onset and progression of these
eterogeneous diseases, where AD and Parkinson’s disease (PD)
re noteworthy causes of morbidity and mortality around the
orld [21,22]. AD is one of the foremost chronic diseases of
he central nervous system (CNS), characterized by memory loss
nd cognitive dysfunction. It exhibits certain neurological and
sychiatric symptoms and behavioural disorders [23]. Protein
ggregates are found in postmortem brain tissues afflicted by
DDs [24]. Pathologically, AD is marked by the presence of ex-
racellular amyloid plaques (Aβ), and intracellular neurofibrillary
angles (NFTs) of tau protein (τ ) within the brain [25]. The reason
ehind AD is assumed to be impairment of the link between
euronal and astrocytic (non-neuronal) functions in brain regions
elated to memory or thinking (such as the hippocampus) [26].

Astrocytes, or astroglia, are another kind of glial cells that play
role in synapse development and ion homeostasis. They are also
onnected to the brain immune system [21]. Astroglia operates as
n immune cell type in a healthy brain, but when AD is present,
hey can act differently. Astroglia becomes activated and reactive
n the presence of AD [27]. Importantly, astrocyte reactivity is a
efining feature of neuroinflammation, which occurs in AD and
ractically every other NDDs [28]. This reactivity of astrocytes
lso promotes degeneration and intracellular protein aggrega-
ion [29]. NDDs tend to progress in a predictable pattern through
he brain, for instance, in AD τ aggregates are first discovered
n the locus coeruleus and entorhinal cortex, then spreading to
he hippocampus, temporal cortex, and parietal cortex before
ntering the motor cortex and occipital brain regions [24]. The
rotein aggregates are the foundation of the prion-like hypothesis
or NDDs [30]. This process is based on the assumption that
ike prion diseases [24,25], NDDs are produced by the systematic
ggregation and transport of misfolded proteins in the brain via
xonal pathways [24,31,32]. It is specifically applicable to protein
ggregates observed in AD. Species like monomeric, oligomeric,
nd fibrillar activate astrocytes, which can result in neuronal
eath [33]. τ proteins are normally generated by the cell in

healthy tissue, but in some circumstances, these proteins begin
to form misfolded aggregates, and this misfolded version of the
protein works as a toxic template on which regular proteins
can be bound and transformed to misfolded ones. Since τ is
an intracellular protein, these various huge aggregates travel
largely across the brain via a network of axonal channels [34–36],
and numerous methods of cell–cell spreading have been found
([24] and references therein). Aβ , on the other hand, is known
to form large extracellular aggregates [37–39]. We know from
diffusion tensor imaging that diffusion is preferentially along the
axons if these aggregates are carried inside the brain as a simple

diffusion process. Importantly, in most models of AD, the focus

2

is on the development of Aβ fibrils, which are assumed to be
the primary pathogenic factor for cell death. Murphy and Pal-
litto, for example, proposed a homogeneous Smoluchowski model
that was validated using kinetic experiments [40]. Additionally,
Bertsch et al. [41] considered and implemented a model for the
accumulation and distribution of Aβ in a brain slice geometry.
Matthäus also discretized and analysed similar equations on
networks [42]. Therefore, building on these earlier works, we
develop a broad framework to study toxic protein propagation
in the brain represented as a network based on the prion-like
hypothesis of NDDs. Since Aβ and τ proteins are considered as
a hallmark of AD [21], we will illustrate the NDD’s model based
on both Aβ and τ proteins on a large-scale brain network. The
network model is constructed from a coarse-grained continuum
model. Note that the fragmentation comes from astrocytes, where
astrocytes play an important role in clearing Aβ [27]. However,
in the present study, we assume that astrocytes do not clear the
toxic τ proteins. The simplifying assumptions we make for the
present study are adopted from [24] while maintaining crucial
properties of known mechanisms.

As a result, we investigate the propagation of intracellular
protein aggregates across the brain using Smoluchowski’s aggre-
gation theory [24]. Our special attention is given to how coarse-
grained models might be utilized to capture the complicated
underlying dynamics of astrocytes’ role in AD. The continuous
equations are initially formulated using anisotropic diffusion, and
then the equations are discretized on a large-scale brain network.

2. General theory and mathematical modelling approach

In this section, we first discuss the theory behind the gen-
eral Smoluchowski model for aggregation and fragmentation of
toxic proteins, and then we develop the general and continuous
Smoluchowski model for NDDs.

2.1. Smoluchowski’s model for NDDs

The mathematical models are important in order to study
the kinetics of misfolding proteins, for instance, the simple one-
concentration Fisher–Kolmogorov model [43], the two-
concentration heterodimer model [44] and the n-concentration
Smoluchowski model [25,45]. Before getting into the problem of
proteins in the brain, it is worth briefly recasting Smoluchowski’s
general theory of particle aggregation and fragmentation in space
and time [45]. Firstly, we will consider the continuum case and
then discretize these equations on a large-scale brain network.
Let Ci be the aggregates and ci be the concentration of aggregates
of size i ∈ N. These concentrations are defined in space and time,
thus ci = ci(x, t), x ∈ Ω ⊂ R3, t ∈ R+. Moreover, we assume
a monomer supply and a clearing procedure that reduces each
population at a fixed relative rate, then these equations are:

∂ci
∂t

= ∇ · (Di · ∇ci) + k0,i − k1,ici + Ni + Ai + Fi, i = 1, 2, . . . ,

where Di denotes the diffusion tensor describing the dispersion of
an aggregation of size i, Ni is the nucleation, Ai is the aggregation,
and Fi is the fragmentation term. We assume ν0,1 = γ (x), ν0,i = 0
for i > 1 and ν1,i = ν1,i(x). In the context of protein kinetics
in NDDs, two different nucleation processes are important. We
exclusively investigate binary processes in which the aggregates
i and j interact with aggregates of size i + j with an aggregation
rate νi,j and a fragmentation rate βi,j as follows:

Ci + Cj

νi,j
−−⇀↽−− Ci+j, i, j = 1, 2, 3, . . . .

βi,j
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irst, the primary nucleation akin to n1 > 1 monomers having an
ggregate of size n1,

C1 + · · · + C1
ξ1
−→ Cn1 ,

nd the secondary nucleation where for n2 > 1 monomers, the
xisting aggregates allow to form new aggregates [24]

i + C1 + · · · + C1
ξ2
−→ Ci + Cn2 , i = 2, 3, . . . ,

where ξ1 and ξ2 denote primary and secondary nucleation, re-
spectively. Here, the rate constant with respect to the secondary
nucleation is proportional to the overall mass

∑
i>1 ici. Consider-

ing the above, the nucleation term is given by

Ni = ξ1δi,n1c
n1
1 + ξ2δi,n2c

n2
1

∞∑
j=2

jcj, i = 2, 3, . . . ,

where, δi,j is the Kronecker delta. According to the law of conser-
vation of mass in the nucleation process N1 +

∑
∞

i=2 iNi = 0 [24],
hence

N1 = −n1ξ1δi,n1c
n1
1 − n2ξ2δi,n2c

n2
1

∞∑
j=2

jcj.

In aggregation process, the aggregate Ci disappears in the pres-
ence of Cj to form Ci+j (see Fig. 1):

Ci + Cj
νi,j
−→ Ci+j, j = 1, 2, 3, . . . , (1)

and also appears but with different indices

Ci−j + Cj
νi−j,j
−−→ Ci, j = 1, 2, . . . , i − 1. (2)

t is noteworthy that the symmetry produced by exchanging j
ith i − j in this equation implies that we must count these
eactions twice excluding while i = 2j. Therefore, these effects
can be stated as follows using the law of mass action [46,47]:

Ai =
1
2

i−1∑
j=1

αj,i−jcjci−j −

∞∑
j=1

αi,jcicj,

where αi,j = αj,i = ki,j, when i ̸= j and αi,i = 2ki,i, when i = j.
Consequently, as a result of the double counting, the component
1/2 appears in the above equation. Finally, the fragmentation
terms follow the same dynamics, but they take the reactions (1)
and (2) in the reverse direction. Hence, the loss of aggregates Ci

is

Ci
βj,i−j
−−→ Cj + Ci−j, j = 1, 2, . . . , i − 1,

nd the large aggregates create the aggregates of size i by the
ragmentation as (see Fig. 1):

i+j
βi,j
−→ Ci + Cj, j = 1, 2, 3, . . . ,

esults in

i = −
1
2

i−1∑
j=1

βj,i−jci +
∞∑
j=1

βi,jci+j.

The Smoluchowski equations for nucleation-aggregation-
ragmentation, taking into account the above equations, can be
3

written as follows [24]:

∂ci
∂t

= ∇ · (Di · ∇ci) + ν0,i − ν1,ici − n1ξ1δi,1c
n1
1 − n2ξ2δi,1c

n2
1

∞∑
j=2

jcj

+ξ1δi,n1c
n1
1 + ξ2δi,n2c

n2
1

∞∑
j=2

jcj +
1
2

i−1∑
j=1

(αj,i−jcjci−j − βj,i−jci)

−

∞∑
j=1

(αi,jcicj − βi,jci+j), i = 1, 2, . . . .

The approach discussed here has been used to investigate protein
spread in NDDs [24,48].

2.2. Continuous model for disease propagation

Researchers have previously discussed the general aggrega-
tion process of different sizes [24,40]. Fornari et al. made many
assumptions where the formation and growth of a fibril are dom-
inated at the ends of the fibril by the addition of monomers [24].
As a result, we assume that the fibrils are formed by the addition
of monomers. We consider the aggregation process of the form:

Ci + C1
νi,1
−→ Ci+1.

We further assume that for polymers, the rates are dependent on
size so that the probability of attaching a monomer to a chain
depends on the length of the chain, i.e., νi,1 = ν1,i = νi+1 for all

> 1, which implies αi,1 = α1,i = α. Moreover, we will only
onsider linear aggregation, which has the form:

i = α(c1ci−1 − cic1), i = 2, 3, . . . ,N − 1,

where N is the size of the super particle consisting of all ag-
gregates having a size larger or equal to N . The value of N is
determined to be equal to the size of the smallest insoluble
particle that does not diffuse and fragment. Thus following [24],
cN is the concentration of a super-particle defined as:
∂cN
∂t

= −µncN + αc1cN−1.

or the rest of the analysis, we follow [24] and assume that
he smallest possible fragment is of size ζ = 1, indicating that
he dimer can fragment into two monomers. This is because
strocytes break chains into monomers or clear monomers, even
iny particles. Now the interesting thing about our study is that
e can assume that the clearance rate is dependent on the size
f the aggregate; in this case, ν1,i = µi(i = 1, . . . ,N). Here, βi de-
otes the fragmentation coming from the astrocytes. In order to
ncorporate the two factors that contribute to the development of
imers, we make the assumption that nucleation occurs through
he generation of dimers by introducing 2κ = αi,i + ξ1 as shown
experimentally [49], where κ represents nucleation. Taking into
account the above assumptions, the continuous model is given as
follows:

∂c1
∂t

= ∇ · (D · ∇c1) + γ − µ1c1 − 2c21
(
κ + ξ

N∑
j=2

jcj
)

− c1α
N−1∑
j=2

cj +
N−2∑
j=1

β1+jc1+j,

∂c2
∂t

= 2−η
∇ · (D · ∇c2) −

(
µ2 +

1
2
β2

)
c2 + c21

(
κ + ξ

N∑
j=2

jcj

)

− αc1c2 +

N−3∑
β2+jc2+j,
j=1
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Fig. 1. Fragmentation: this is the process where monomers are created from astrocytes, i.e., an i-mer aggregates with a j-mer to form an (i− j)-mer with rate βi,i−j .
Aggregation: this is the process which serves as a good example for the creation of fibrils by adding monomers to an aggregate, i.e., an i-mer merges with a j-mer
to form an (i + j)-mer with the rate νi,j .
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∂ci
∂t

= i−η
∇ · (D · ∇ci) −

(
µi +

βi

2
(i − 1)

)
ci + c1α(ci−1 − ci)

+

N−i−1∑
j=1

βi+jci+j, i = 3, . . . ,N − 1,

∂cN
∂t

= −µncN + αc1cN−1,

where, Di = i−ηD with η = 1/3, because different-sized aggre-
ates are transported differently, with larger aggregates diffusing
ess quickly [50]. The weight of an oligomer is related to its size,
nd the diffusion coefficient of a soluble molecule scales roughly
s a power of its molecular weight [24]. As a result, we use a
ower law to scale the diffusion tensor according to the size of the
ggregates. The relative sizes of the parameters should be taken
nto account when scaling them properly to create dimensionless
ew variables. Let m0 be the total initial mass of the system (or,
quivalently, the total initial monomer concentration since we as-
ume constant overall volume). We scale all concentrations with
he initial mass m0 and the time with the usual time associated.
The scaling of the variables and dimensionless parameters are
then provided by:

ci = m0c̃i, t =
1
m0

t̃,

D̃ =
D
m0

, γ̃ =
γ

m2
0
, µ̃i =

µi

m0
, ξ̃ = ξm0, β̃j =

1
m0

βj.

fter substitution in the system and then removing the tildes, we
btain

∂c1
∂t

= ∇ · (D · ∇c1) + γ − µ1c1 − 2c21
(
κ + ξ

N∑
j=2

jcj
)

− c1α
N−1∑
j=2

cj +
N−2∑
j=1

β1+jc1+j, (3a)

∂c2
∂t

= 2−η
∇ · (D · ∇c2) −

(
µ2 +

1
2
β2

)
c2 + c21

(
κ + ξ

N∑
j=2

jcj

)

− αc1c2 +

N−3∑
j=1

β2+jc2+j, (3b)

∂ci
= i−η

∇ · (D · ∇ci) −

(
µi +

βi (i − 1)
)
ci + c1α(ci−1 − ci)
∂t 2
4

+

N−i−1∑
j=1

βi+jci+j, i = 3, . . . ,N − 1, (3c)

∂cN
∂t

= −µncN + αc1cN−1. (3d)

hree significant minor dimensionless parameters (βi ≪ κ ≪ 1
nd ξ ≪ 1) are included in this new formulation. As discussed
n detail in [24], these parameters are insufficient for a direct
imulation of toxic protein evolution in the brain. Consequently,
heir significance originates from the relative values of a variety
f these parameters, which we shall keep in mind throughout
ur investigation. As a result, in the absence of adequate quan-
ification of these brain parameters, the following study should
e regarded as a qualitative examination of solutions rather than
uantitative predictions.

. Large-scale brain network model

It is well known that the neuroanatomical structure of large-
cale brain networks offers a skeleton of connected brain regions
hat promote signalling along preferred paths in support of spe-
ific cognitive functions. However, to determine which combina-
ions of interacting brain regions are conceivable, it is necessary
o identify the brain areas that compose structural network nodes
nd the connecting pathways that function as structural network
dges [51]. Moreover, the transmission of misfolded proteins
rom a small infected brain region through axonal fibre pathways
cross the whole brain is a distinguishing hallmark of prion-like
iseases [25]. In the present study, this spreading is modelled
s diffusion through the entire brain connectome [52], which is
epresented as a weighted undirected graph ℘ with N nodes and
edges.

.1. The connectivity-weighted graph

We extract the graph ℘ from the tractography of diffusion
ensor magnetic resonance images of 1064 healthy subjects of the
uman Connectome Project [53] using the Budapest Reference
onnectome v3.0 [54]. Further, the connectivity-weighted graph
s defined with N = 1015 nodes and E = 16 280 edges. The mean
ibre number varies between 1 ≤ nij ≤ 4966.5, with an average of
īj = 39.33 fibres per edge and most fibres between the superior
arietal and the precuneus regions. The mean fibre length varies
etween 10.270 mm ≤ lij ≤ 83.003 mm, with an average of

¯ij = 30.089 mm. The average path length (defined as the average
umber of steps along the shortest paths for all possible pairs
f nodes) and the global clustering coefficient (defined as the
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Fig. 2. The brain surface is represented by the overall brain regions in the left and right hemispheres. The weighted adjacency matrix with 1015 nodes was obtained
by averaging over 418 healthy brains from the Human Connectome Project. Colours represent the connection strength between two regions. Connectivity is moderate
to strong within the two brain hemispheres, while there are only a few weak connections between hemispheres.
fraction of paths of length two in the network that are closed
over all paths of length two) leads to a small-world network [3] in
which highly connected nodes are more likely to become infected
and turn into hubs of misfolded protein spreading [24,25].

3.2. The graph Laplacian and Smoluchowski’s network model for
NDDs

It is noteworthy that the continuous equations for NDDs de-
ived for large N in Section 2 are extremely difficult to integrate
ver the whole brain, even with the most modern methods. We
eed to obtain the model by making use of significant anisotropy
f the entire network. Therefore, we assume that transport oc-
urs along the axonal tract only, and we substitute the diffusion
perator with the graph Laplacian to generate a brain network
pproximation of the model. We may describe the connectivity
f the graph ℘ in terms of the weighted adjacency matrix Aij

obtained as the ratio of mean fibre number nij and mean length
squared lij between nodes i and j. From Aij, we compute the
weighted degree matrix Dii, a diagonal matrix that characterizes
the degree of each node i, and the weighted graph Laplacian Lij
as [24]:

Aij =
nij

l2ij
,Dii =

V∑
j=1

Aij, Lij = ρ(Dij − Aij), i, j = 1, . . . , V ,

where ρ is an overall constant. The inflated view of the whole
brain surface obtained from freesurfer is presented in Fig. 2(a).
The adjacency matrix is shown in Fig. 2(b). In the present study,
the seven brain regions that have been selected are: temporal,
parietal, frontal, brain stem and occipital, together with the basal
ganglia and the limbic region. We consider each node to be one
particular region of the brain. These pronounced variations in
degree and adjacency confirm the general notion that the archi-
tecture of our brain resembles a small-world network in which
highly connected nodes are more likely to become infected and
turn into hubs of misfolded protein spreading. Due to transport
along the axons across the brain’s connectome, we model the
spreading of monomers and protein aggregates as a diffusion
process. The Smoluchowski network models have been shown
to be an excellent approximation of the continuous and discrete
brain network model [24]. In this case, we first define ci,j to be the
concentration of an aggregate of size i at node j, and the network
5

equations corresponding to the continuous model take the form
of a system of N × V first-order ODEs. Therefore, the network
protein model will be:

dc1,j
dt

= −

V∑
k=1

Ljkc1,k + γj − µ1,jc1,j − 2c21,j
(
κj + ξ

N∑
k=2

kck,j
)

− c1,jα
N−1∑
k=2

ck,j +
N−2∑
k=1

β1+k,jc1+k,j, (4a)

dc2,j
dt

= −2−η

V∑
k=1

Ljkc2,k −

(
µ2,j +

1
2
β2,j

)
c2,j

+ c21

(
κj + ξ

N∑
k=2

kck,j

)
− αc1,jc2,j +

N−3∑
k=1

β2+k,jc2+k,j, (4b)

dci,j
dt

= −i−η

V∑
k=1

Ljkci,k −

(
µi,j +

βi,j

2
(i − 1)

)
ci,j

+ αc1,j(ci−1,j − ci,j) +

N−i−1∑
k=1

βi+k,jci+k,j, (4c)

dcN,j

dt
= −µn,jcN,j + αc1,jcN−1,j, (4d)

where i = 3, . . . ,N−1 and j = 1, . . . , V . We have also accounted
for a possible reliance on clearance and output rates on different
nodes.

4. The homogeneous case for the analysis of the Aβ model

In the present section, we will evaluate the total mass of Aβ

aggregates when the astrocytic clearance is size-dependent or
independent. Also, the analysis of toxic mass has been discussed
in detail for three different cases by choosing different parameters
for clearance and fragmentation.

4.1. Analysis of total mass

To study in-depth the application of Smoluchowski’s mod-
elling framework to our problem, we will find the solutions that
are constant in space. Therefore, both the network and continuum
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Table 1
Parameter values for the large-scale brain network model for the Aβ [24].
Parameter Definition Value

ξ Secondary nucleation 10−3 V
βi Fragmentation rate As given in Section 4.2
α Elongation rate 1
γ Production rate 10−2 V2

µi Clearance rate As given in Section 4.2
ρ Diffusion constant 2 × 10−5

m0 Initial monomer c 1
V Number of nodes 1015
N Super particle size 400

models have the same set of ordinary differential equations given
as follows:
dci
dt

= γ δ1,0 − µici + Ni + Ai + Fi, i = 1, 2, . . . ,N − 1,

dcN
dt

= −µNcN + c1cN−1,

where the relevant parameters are given in Table 1, and they take
values according to different cases given in Section 4.2. Moreover,
κi = 10−3(

∑
δi,j), where j = 190 to 198 and j = 698 to 706, is

efined as the nucleation at node i corresponding to the posterior
ingulate region of the brain for our integrated data. The total
ass and the total number of aggregates are given by:

tot =

N∑
i=1

ci,Mtot =

N∑
i=1

ici.

he total mass is not conserved if N → ∞ [46]. Although, for
inite N , the evolution of mass is given by

dMtot

dt
= γ −

N∑
i=1

iµici.

If clearance is independent of size, we have µi = µ, therefore

dMtot

dt
= γ − µMtot ,

the initial conditions at time t = 0 are Mtot (0) = c1(0) =

= γ /µ. Further, the whole mass is then conserved and stable
against small perturbations of the initial state), i.e., Mtot = 1
as a result of the scaling option. Starting with a monomer pop-
ulation of c1(0), the total mass stays constant while aggregates
are formed at the cost of the monomer population. As long
as gelation does not occur, this process is independent of the
aggregation mechanism. Gelation is similar to treating the super-
particle independently in a finite system. Because the net flow to
the super-particle is limited, the mass of some other aggregates
is transferred to the super-particle. Moreover, if clearance is
dependent on size, we have µi = µ/i, then

dMtot

dt
= γ − µPtot ,

again the initial conditions at time t = 0 are Mtot (0) = c1(0) =

= γ /µ. Since Ptot ≤ Mtot and the equality happens only if
tot = Ptot = c1, we get Mtot > γ − µPtot > 0 for t > 0
nd the overall mass of the system increases due to the forma-
ion of additional monomers. Particles belonging to aggregates
re removed from the system through clearing, although their
emoval is slower than monomer removal. More formally, if we
ave µi ≤ µ1, ∀i > 1, and at least one k > 1 such that µk ≤ µ1,

then, using the same reasoning and initial conditions, we have
M > 0 for t > 0. Also, the system’s total mass increases in this
case.
 S

6

4.2. Analysis of toxic mass

According to our model, for the remainder of the homoge-
neous system analysis for Aβ model, we will study four different
cases. We assume that N is high enough not to alter the dynamics
on intermediate time scales of disease progression. Hence, it is
appropriate to investigate the system in the limit N → ∞.
Furthermore, we are looking for the solutions with no initial
seeding, where c1(0) = 1, and ci(0) = 0, i > 1. As a result of the
system, we have c1(t) ∈ [0, 1] and the total mass M(t) ∈ [0, 1] at
all times (where M =

∑
∞

i=1 ici). The homogeneous system now
reads:

dc1
dt

= γ −µ1c1 −2c21
(
κj + ξ

∞∑
k=2

kck
)
− c1α

∞∑
k=2

ck +

∞∑
k=1

β1+kc1+k,

dc2
dt

= −

(
µ2+

1
2
β2

)
c2+c21

(
κj+ξ

∞∑
k=2

kck

)
−αc1c2+

∞∑
k=1

β2+kc2+k,

dci
dt

= −

(
µi +

βi

2
(i − 1)

)
ci + αc1(ci−1 − ci) +

∞∑
k=1

βi+kci+k,

where ci (i ≥ 1) represents the concentrations of Aβ . Note that
the production rate is γ = 10−2 for all cases to analyse the
toxic mass. While the primary nucleation process is required
to produce initially toxic seeds, various proteins have unique
expansion mechanisms (secondary nucleation or fragmentation).
In vitro experiments on the formation of oligomers based on the
Aβ peptide have shown [24,55] that both primary and secondary
nucleation processes are required to capture the kinetics of the
process across different initial concentrations correctly. Through
a positive feedback process, once a population of toxic seeds has
been created and grown, it acts as a catalyst for developing new
seeds. The value of µ has been explicitly started with 0.001.
Let us discuss three different cases, where we choose different
parameters for each case as follows:

• Case I: µi = µ, α = 1, βi = 0;
• Case II: µi =

µ

i , α = 1, βi = 0;
• Case III: µi = µ, α = 1, βi =

0.01
i .

4.2.1. Case I
In the present case, we assume that µi = µ, α = 1 and β = 0

(i.e., no fragmentation) for the continuous model (Eqs. (3)), then
we get the trivial model as given in [24]. The graph presented in
Fig. 3(a) is similar to the one obtained in [24].

4.2.2. Case II
In this section, first, we assume that the clearance rate de-

pends on the aggregate size. In this case of size-dependent distri-
bution, the clearance is ν1,i = µi for i = 1, . . . ,N . Second, we may
assume that the clearance of an oligomer with i-element is the
same as the elimination of each element for a certain phagocytic
activity or antibody. As a result, chains of size N or greater
cannot be removed, and the removal of large chains becomes
progressively difficult. Also, size-dependent clearance rates are
inversely proportional to oligomer size that is µi =

µ

i for i =

, . . . ,N − 1, the growth parameter α remains constant. Finally,
we assume that there is no fragmentation, then Aβ and τ protein
aggregates grow into increasingly larger fibrillar assemblies, and
the parameters we selected for the present case are as follows:

µi =
µ

i
, α = 1, βi = 0.

ecause τ is an intracellular protein, these large aggregates
pread predominantly through the network of axonal pathways.
imilarly, Aβ is known to produce large extracellular aggregates.
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Fig. 3. The asymptotic size-dependent distribution of the homogeneous Aβ model for three cases (a)–(c).
ssuming that these aggregates are moved inside the brain via
simple diffusion process, diffusion tensor imaging shows that
iffusion occurs preferentially along the axons [24]. As a result,
lthough these proteins are located outside the cell, they also
iffuse anisotropically. It is well known that astrocytes play an
mportant role in the clearance of Aβ [56]. An approach hav-
ing such procedures, where astrocytes clear Aβ are now being
discussed [57,58]. Importantly, as depicted in Fig. 3(b), initially
in the healthy brain astrocytes function as supporting cells to
contribute to immunity and maintain the ionic homeostasis of the
CNS. When the activation of astrocytes is moderate, they protect
neurons and promote an increase in Aβ . In the presence of AD,
the aggregates reach a peak value and astrocytes are activated
[59–61]. Since astrocytes interact with each other and there is
much association between astroglia, activation of one type would
cause activation of the other [27]. These toxic changes lead to
a threshold, and the concentrations of aggregates in the brain
destroy the healthy balance, as can be seen in Fig. 3(b). Finally, as
the level of Aβ reaches a peak point, there is a rapid spread of τ in
the whole brain. Since there is no fragmentation, astrocytes can-
not clear Aβ . Furthermore, when there is enough Aβ , astrocytes
n the AD brain lose their capacity to regulate their ionic equilib-
ium, particularly about the generation of excess glutamate, pro-
ucing an increase in its neurotoxic effects, inhibition of astroglia
hagocytosis by increasing its activation. Astrocyte activation
auses neuronal injury by releasing potentially harmful chemicals
uch as proinflammatory cytokines, reactive oxygen intermedi-
tes, proteinases, and complement proteins [58]. Our findings
how that astrocytes in the absence of fragmentation have the
iggest influence on Aβ during the seeding stage, most likely by
isrupting Aβ clearance and increasing Aβ aggregation [27].

.2.3. Case III
In the present case, we assume that the clearance rate is

ndependent of the size of the aggregates. We also consider that
he fragmentation depends on the size of aggregates given as
ollows:

i = µ, α = 1, βi =
0.01
i

.

Now in the presence of fragmentation, Aβ and τ protein aggre-
ates become more toxic [62]. These fragments contain important
egions of the full Aβ and τ proteins, and Aβ is an amphipathic
eptide with similar aggregation tendency and toxicity [63]. We
ound that when the capacity of early Aβ oligomers tries to bind
monomers, one potential cause of toxicity is the reduction

f the tau population that is needed to regulate the dynamics
f astrocytes. Other potential toxicity routes can be found in
he structures of heteroligomers generated by the contacts of
arious τ to Aβ fragments, which need to be investigated more
horoughly [63]. During the fragmentation, the transportation of
7

monomeric, oligomeric, and fibrillar particles activate astrocytes,
which causes the progression of AD throughout the brain.

In this case of size-independent clearance, we notice that in
the presence of Aβ , for new developmental stages, fragmentation
generates new seeds from larger aggregates. These new seeds
from larger aggregates create new targets for monomers to be
transformed into toxic proteins. The results are presented in
Fig. 3(c). We note that this size distribution is markedly dif-
ferent than the one found for β = 0 in Case II. In Fig. 3(c),
it is shown that the fragmentation clears monomers initially
and breaks chains even for the smallest particles of size i into
monomers. The initial dynamics are dominated by the nucleation
process since the fragmentation comes from astrocytes. Here,
astrocytes play an important role in the presence of Aβ and τ

protein aggregates, which may act as both neuroprotective and
neurotoxic cells. In the initial stages of AD, the activated astroglia
show neuroprotective behaviour. However, when AD progresses,
these glial cells become overactivated, resulting in neurotoxic
functionality. Since glial cells interact with each other, there is
a loop of overactivation and activation occurring within the glial
population [27]. As depicted in Fig. 3(c), the decline phase in
the size distribution of aggregates provides useful information
if the fragmentation is size-dependent. We see that when the
effect of Aβ has reached its limit, which means that there is
no further increase in Aβ , Fig. 3(c) shows that activated and
overactivated astrocyte populations continue to increase with
time. This trend is in agreement with experiment [64]. It suggests
that limiting AD to the effects of Aβ alone is inaccurate and that
the importance of τ proteins, clearance rate of monomers, and
astrocyte neuroinflammation must be included when studying
the etiology of AD. Furthermore, the findings demonstrate that
increasing monomer clearance, as well as any therapeutic therapy
that deactivates astrocytes, slows the progression of AD.

5. Large-scale brain network simulation

In the present section, we consider the dynamic analysis of
protein concentrations at the network level. Among other chal-
lenges, we are motivated by the quests of (a) how the clearance
mechanisms can be modelled and (b) how changes in the clear-
ance or aggregation processes affect the system’s stability to
aggregation pertaining to the specific homogeneous case to the
ones on the entire brain network. These are two important unan-
swered questions in the field of neurodegeneration. Here, we
generalize existing protein aggregation models to account for
both the synthesis of monomers and the removal of protein
aggregates. We demonstrate that, given the specifics of the clear-
ance effects, a critical clearance value occurs at which aggregate
accumulation is prohibited. Our findings demonstrate that a sud-
den change from a healthy to a diseased state can be attributed
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Fig. 4. Three-dimensional views of the brain with its seven associated regions (the different colour nodes associated with each brain region are the same as the
legends presented in Fig. 6(b)).
to small variations in the effectiveness of the clearance process.
Additionally, they offer a mathematical framework for investigat-
ing the specific impacts of various clearance mechanisms on the
accumulation of aggregates in the case described in the previ-
ous Section 4. While the entire brain is a highly heterogeneous
system, classical diffusion is better suited for modelling the free
movement of aggregates in a homogeneous medium when it
comes to large-scale brain networks. Prions would spread equally
quickly in all spatial directions if diffusion in a homogeneous
medium were to be modelled. As prions propagate through neu-
ral pathways, where disease may reach distant brain regions
simultaneously or even faster than neighbouring regions, this is
unlikely to occur in practice [48]. Network nodes are divided
into susceptible and infected nodes; susceptible nodes catch the
disease if at least one of their linked neighbours does. Hence, the
network approach models a fast disease spread inside clusters
of highly connected neurons and propagation to additional clus-
ters via long-distance connections, in contrast to a homogeneous
diffusional spread.

Since the whole brain is considered a network, from one
node to the complete network, we validate the scale parameters
and homogeneous equations. Let m0 be the total mass of the
onomer, assumed to be spread evenly across all V nodes, and

he initial conditions for the entire network are

1,j = 1/V , ck,j = 0, k = 2, . . . ,N; j = 1, . . . , V .

Then, for the network to have the same kinetics as the homo-
geneous system, we must scale the variables as c = ch/V and
parameters from the homogeneous system (now described by the
subscripts ‘‘h’’) as follows: γ = γh/V 2, µ = µh/V , ξ = ξhV , β =

h/V , κ = κh. Similarly, the time scale is now t = thV . Consider-
ing the homogeneous case discussed in the previous section, for
the network to have the equivalence kinetics, we set κi = κ and

= 0 in Eqs. (4). Therefore, the population of toxic proteins has
he same dynamics as shown in Fig. 3 for each case. The important
hing is how to correctly seed the system to demonstrate that the
isease begins in a certain region. We can either start with a non-
ero initial condition of oligomers at a particular node or assume
hat nucleation is the primary mechanism for the initial creation
f toxic proteins at a given node. In this case, we use the latter
odelling assumption and suppose that κi vanishes everywhere

except at certain nodes where it has a small value. These nodes
are recognized to be the seeding sites for NDDs (the list of regions
of interest, together with their node number, lobe, hemisphere,
and spatial coordinates is given in the supplementary material of
8

Ref. [24]). The views of the brain with its seven associated regions
are shown in Fig. 4.

5.1. Analysis of Aβ toxic protein mass and total monomers

It is noteworthy that the overall toxic mass (obtained by
adding the masses of all aggregates at each node) evolves in
a similar manner as for a homogeneous system, although the
system is not homogeneous.

5.2. Spreading behaviour

A biomarker is a global metric used to characterize the pro-
gression of neurodegeneration throughout the brain [25,65]. The
biomarker abnormality is calculated as the temporal evolution of
the total concentration of misfolded proteins integrated across a
specific region of interest or the entire brain. We consider the
biomarker spectrum of the toxic proteins of the size distribution
to illustrate the dynamics of the Smoluchowski model. Over the
entire brain network, to better understand the development of
toxic proteins, we compute the toxic mass as a function of time
at each node:

Mj(t) =

N∑
i=2

ci,j(t), j = 1, . . . , V .

We average the toxic mass of all regions considered in the present
study, e.g. the usual four lobes: basal ganglia, temporal, parietal,
frontal occipital along with the limbic region, basal ganglia and
brain stem as shown in Fig. 4. The average formula is:

M (j)
=

1
xj

∑
i∈Xj

Mi, j = 1, . . . , 7,

where Xj is defined as the set of all nodes in that region and xj is
the number of elements of Xj. The development of the toxic mass
at each node clearly shows the additional delay in disease pro-
gression caused by diffusion from one node to the next. While the
disease progresses quickly at the seeded node, additional nodes
experience the disease on a new time scale that is directly related
to diffusion (via the overall scaling constant). The frontal pole,
located at the extreme of the frontal lobe and sparsely linked in
the connectome, is the final node to be invaded. The occipital lobe
becomes the final lobe to be infected if these extreme nodes are
omitted from the calculation. Since we discussed three different
cases in detail in the previous Section, now we will study those
cases over the entire brain network with 1015 nodes and seven
selected regions.
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Fig. 5. Spreading behaviour of toxic proteins Aβ over the entire brain network
for Case I. Here, the x-axis (left to right) represents n monomers and the y-axis
(from bottom to top) represents the following brain regions, respectively: limbic,
frontal, basal ganglia, parietal, temporal, occipital and brain stem.

As presented in Fig. 5, we see that for Case I, when there is no
fragmentation, the node curves do not intersect, this means that
the order of the nodes by the toxic mass does not considerably
alter [24]. The progression of the disease state can be seen region-
wise over the whole brain in Fig. 5. Although, the brain stem is
not visible in Fig. 5 because it contains only one node and white
lines represent the separation of regions. We observed that in
Fig. 5, initially, the system only significantly changed from having
a massive population of healthy monomers to dimers and the
seeded nodes are the only nodes that are affected. This behaviour
can be seen in Fig. 5, where the seed’s concentration is observed
to rise linearly before affecting additional nodes. Later, depending
on the kinetics, the toxic mass at the seeded node increases.
It also expands at additional nodes. Here, the nodes that are
directly related to the seeding nodes will undergo the primary
infection. The network structure and protein kinetics affect the
secondary infection. Only areas around the nodes connecting to
the seeding nodes are affected. Following the secondary infection,
the infection of the entire system progresses fast and reaches the
brain stem. Only sparsely linked nodes, such as the limbic, and
frontal poles, are less affected.

Previously, we have discussed the temporal dynamics of Case
II in detail in Section 4.2.2. Now we will see the spreading be-
haviour of toxic proteins over the entire brain network when the
clearance is size-dependent and fragmentation is zero in Fig. 6.
Moreover, over the nodes, the curves do not intersect and the
toxicity does not alter. However, in the absence of fragmenta-
tion Aβ and τ protein aggregates develop into larger and bigger
fibril assemblies. These large aggregates mostly disperse across
the brain network of axonal routes since τ is an intracellular
protein. Through diffusion, when the large aggregates move from
extracellular to intracellular space in the brain nodes the disease
state occurs. Importantly, now the clearance is size-dependent as
astrocytes help to clear all the monomers, even the smallest one
until the toxic mass changes reach a threshold. The astrocytes
clear all the monomers until the toxicity increases and seeded
nodes converge to a disease state. It can be seen that in Fig. 6(a),
the seeded nodes in specific regions have a strong connection
between them, so at the later stage, all the nodes are infected
9

over the whole brain. It is depicted in Fig. 6(a) that the toxicity
spreads over the whole brain when the nodes intersect with each
other. Moreover, as presented in Fig. 6(a), the time scale we have
chosen is large which is why we see that all the nodes converge
to a disease state. If we take a small time scale, the behaviour of
toxic mass at each node will be the same as presented in Fig. 8(a).
We have presented the zoom view of toxic mass at each node as
shown in the insert of Fig. 6(a). Importantly, we assume that the
smallest possible fragment is of size ζ = 1, implying that once
a dimer is produced, it remains stable and does not fragment.
Aggregation must be preferred over fragmentation, i.e., β < α

to create large aggregates. The evolution of fibril length, the
transfer from tiny aggregates to larger aggregates, is referred to
as growth. Growth increases the size of a toxic seed once it has
been generated. Later on, either fragmentation or clearance of
monomers diminishes this process. As shown in Fig. 6(a), the
dynamic is related to many spatio-temporal scales.

Initially, the toxic protein population grows exponentially over
a typical time scale calculated by assuming that m(t) = c1(t) = 1.
However, when compared to the amount of toxic protein, the
size distribution only approaches its asymptotic value over a
significantly longer average time scale. Now, the astrocytes help
to clear all the monomers, even the smallest particles. In AD,
each monomer’s self-assembly process is affected by the two
fragments, Aβ plaques and τ proteins [63]. The τ protein has
a strong preference for forming heteroligomers with other Aβ

monomers and oligomers. Whether the population of Aβ or τ is
dominant, it determines the configurations and properties of the
heteroligomers. The addition of τ to rich Aβ oligomers reduces
Aβ aggregation tendency but does not eliminate fibril formation.
The τ monomers and dimers, on the other hand, can progress to
bigger oligomers and form granular aggregates by forming com-
plexes with Aβ . These heteroligomers may contribute to toxicity
by disrupting τ normal function or by causing the aggregates to
be toxic. It can be seen clearly in Fig. 6(b), initially, the spreading
behaviour in the specific regions is increasing. The seeded nodes
will spread infection in the connected nodes as opposed to the
kinetics of aggregation. It is evident that the majority of nodes
in the specific regions become infected fast at this stage. At this
time, the disease has spread to all nodes in each region, and
the toxic mass quickly achieves its peak value in homeostasis
with the mass of healthy monomers. The most affected nodes are
occipital and parietal, as presented in Fig. 6.

Next, Fig. 7 represents the distribution of disease over the
entire brain network by averaging the toxic mass at each node
and in the specific regions. Importantly, by bringing aggregates
from adjacent areas to the local area, diffusion has the impact
of lowering local concentrations that are high. Diffusion enables
seeds to spread since it starts in a specific, concentrated, small
region. In Fig. 7, the progression of the toxic mass at each node
clearly illustrates the additional delay in disease propagation im-
posed by diffusion from one node to the next. While the disease
spreads quickly at the seeding node, it affects additional nodes
on a new time scale that is directly related to diffusion (through
the overall scaling constant ρ). It is depicted in Fig. 7 that the
spatio-temporal patterns of n monomers over the brain regions
such as limbic, frontal, basal ganglia, parietal, temporal, occipital
and brain stem show that these regions are directly relevant to
the disease progression. The local dynamics of brain regions are
displayed vertically (from bottom to top) and begin with seeding
before progressing through growth, expansion, and saturation. In
Fig. 7, the limbic region that is most damaged in this situation is
represented by the area that is extremely red and dense. Given
that the limbic area is located in the middle of the brain, the
likelihood of disease progression is increased. Since the clear-
ance is size dependent, initially the toxic mass increases linearly.
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Fig. 6. Spreading behaviour of Aβ toxic proteins over the entire brain network for Case II.
u

Fig. 7. Distribution of disease over the entire brain network for Case II. x-
axis(left to right) represents n Aβ monomers and y-axis (from bottom to top)
epresent the following brain regions, respectively: limbic, frontal, brain stem,
asal ganglia, parietal, temporal, and occipital.

ater on, clearance slows down the progression of the disease.
mportantly, in the absence of fragmentation, astrocytes will not
lear Aβ , but it is well acknowledged that clearance is essential
or slowing the progression of AD. To the best of our knowledge,
hese are the novel results so far for the spatio-temporal dynam-
cs of Smoluchowski’s model for NDDs. Our prediction is accurate
n the sense that clearance varies with the aggregate size and is
ey to slowing down the progression of the disease [24,25,28].
onsidering Case III, when the clearance rate is independent of
he size of the aggregates, and the fragmentation is non-zero,
strocytes help to clear all the monomers, initially. We see that
n Fig. 8(a), the activated and overactivated astrocyte populations
.g., the toxic mass increased until all the nodes intersect and
he toxicity spreads over the whole brain. Although astrocytes
elp to clear even the smallest particle since the fragmentation
s size dependent and the clearance rate is constant, the Aβ and
10
τ proteins become more toxic, this would result in a higher
concentration of toxic mass as shown in Fig. 8(b). Finally, the
disease starts and the basic infection occurs in nodes associated
with the seeded nodes and is primarily governed by the diffusion
process as opposed to the kinetics of aggregation. These nodes
reproduce new seeds, which causes the secondary infection in all
nodes associated with the original nodes, and so on. Given that
the average path length is around 1.5 cm2, it is obvious that this
network layout causes most nodes to become infected quickly at
this stage. The disease has spread to all nodes at this point, and
the toxic mass soon reaches its maximum values in equilibrium
with the mass of healthy monomers.

Next, let us discuss the distribution of disease over the entire
brain network for Case III, as shown in Fig. 9. We see that in
Fig. 9(a), the distribution of disease on brain nodes, where the
dark red part is highly affected, and less red is less affected. More-
over, the spatio-temporal patterns for Case III are represented in
Fig. 9(b), and we see the disease distribution of n monomers over
the brain region such as limbic, frontal, basal ganglia, parietal,
temporal, occipital and brain stem. The highly red dense part rep-
resents the limbic region that is most affected in the present case.
Since the limbic region is found in the middle portion of the brain,
there are higher chances of disease progression. The consequence
of fragmentation is the development of smaller aggregates, which
not only accelerates clearance but also increases the total expan-
sion of the protein population. We anticipate a decrease in the
critical value of clearance as well as the potential of a limited
value of clearance since smaller aggregates are more likely to
be cleared. Importantly, the choice of clearance rates certainly
has a big influence on clearing values since they vary from the
smallest to the highest [66]. Therefore, the total rise in aggregate
mass in the present case may depend greatly on whether the
clearance process is enhanced or inhibited. Since the clearance
rate is constant the monomer’s production increases. Therefore,
this model for Case III maintains the total initial mass of the
monomers when clearance is independent of aggregate size.

Our data contains 1015 nodes, and we divide our job into
many processors. We have selected the number of CPUs as the
divisors of 1015. Like, for 10,000 iterations, for 1 CPU, the com-
putational time is 4398.6 s, for 5 CPU’s it is 120.06 s, for 7 CPU’s,
it is 89.46 s, and for 35 CPU’s, it is 30.67 s. If we solve the problem
sing standard serial programming, this requires a significant
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Fig. 8. Spreading behaviour of Aβ toxic proteins over the entire brain network for Case III.
Fig. 9. Distribution of disease over the entire brain network for Case III. (a) Average toxic mass of Aβ at each node. (b) the x-axis (left to right) represents n-monomers
nd the y-axis (from bottom to top) represents the following brain regions, respectively: limbic, frontal, brain stem, basal ganglia, parietal, temporal, and occipital.
mount of computing time. Through the use of open MPI and
he C programming language, we can reduce computing time. We
ivide the sequential tasks involving the spatial points among
vailable processors for each time iteration and perform them
n parallel. All figures have been plotted and shown in Matlab
fter the data have undergone post-processing. To reduce the
ime required to acquire results for the parallel computation, we
mployed the SHARCNET supercomputer facilities.

. Conclusions

According to the prion-like hypothesis of neurodegenerative
iseases (NDDs), the concentration of misfolded proteins causes
issue death, neurodegenerative pathology, and cognitive decline.
he present study has focused on developing a modified multi-
cale brain network model and analysing dynamic processes in
tudying the properties of important NDDs, for instance, AD. The
oncentration of proteins is in the form of aggregates and since
hese aggregates are of various sizes and have various transport
roperties and toxicity, it is crucial to track their evolution inde-
endently over time and space. The growth of the aggregates is
aken into account as a continuum with diffusion along axonal
11
routes and the model takes the form of sets of nonlinear Smolu-
chowski equations interacting on a network through the graph
Laplacian.

In the present study, we have considered the Smoluchowski
model to study the spread of intracellular protein aggregates
along with astrocytes across the brain. Here, we considered three
paradigmatic cases for the intracellular spread of τ molecules
where fragmentation is important and for the extracellular dis-
persal of Aβ , which is further increased by secondary seeding and
aggregation. The interesting finding of our study is that when
the clearance depends on the aggregate size, these multi-scale
brain network models will not conserve the total initial mass
of monomers. As a result, the usual qualitative traits of toxic
proteins identified through brain regions and nodes are persistent
and closely related to the development of the disease over the
brain network. Fragmentation comes from astrocytes, and it is
essential for seeding a non-monotonic distribution of aggregate
concentrations. The accumulation of misfolded Aβ in the brain is
thought to be the result of an imbalance in its production and
clearance. We found that the astrocytes play an important role in
clearing Aβ even for the smallest possible fragment of size ζ = 1.
Importantly, in our work, we have used the astrocytic clearance
for the Aβ , and we assume that astrocytes do not clear the
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oxic τ proteins. Our results are consistent with the experimental
tudies [67–71]. The proposed novel model is sufficiently flexible
o be further adapted to more complex dynamics or connected
o other important phenomena according to the theory described
ere. It is well known that clearance is essential for stopping
he progression of AD. Therefore, to understand fundamental
echanisms and pinpoint potential treatment targets, it will be
ssential to further carefully study the related parameters and
heir connections to other phenomena associated with the pro-
ression of AD. Finally, we predicted that when fragmentation
oes not depend on the aggregate size, astrocytes help to clear the
nitial mass of monomers. Hence, it will be interesting for future
tudies to critically address the ways in which fragmentation
aries with the aggregate size, which would greatly facilitate the
esearch and comprehensive analysis of the standard model.
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