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Abstract. One in six of the world’s population has to deal with neurodegenerative disorders,
and while medical devices exist to detect, prevent, and treat such disorders, some fundamentals
of the progression of associated diseases remain ambiguous. In this contribution, we focus on
Alzheimer’s disease (AD), where amyloid-beta (Aβ) and tau proteins are among the main con-
tributors to the development or propagation of AD. The Aβ proteins clump together to form
plaques and disrupt cell functions. Moreover, the abnormal chemical change in the brain helps
to build sticky tau tangles that block the neuron’s transport system. Astrocytes generally main-
tain a healthy balance in the brain by clearing the Aβ toxic plaques. Even so, over-activated
astrocytes release chemokines and cytokines and also react to pro-inflammatory cytokines,
further increasing the production of Aβ. We have provided details of a novel coupled math-
ematical model that can capture astrocytes’ dual behaviour, emphasizing the importance of
spatio-temporal coupling and nonlocality. We have demonstrated that the disease propagation
depends on memory effects, that is the disease’s earlier status, which involves non-Markovian
processes. We have explained how to integrate brain connectome data in the network model and
to study this effect, as well as the dual role of astrocytes as a coupled phenomenon. Depending
on toxic loads in the brain, we have also discussed details of the analysis of the neuronal dam-
age in the brain. We have explained how the memory effect can slow down the propagation of
toxic proteins in the brain, decreasing the rate of neuronal damage. Representative numerical
examples have been given, and special attention has been paid to nonequilibrium considerations
and stochastic modelling frameworks in the study of neurodegenerative diseases.

1 INTRODUCTION

In the forthcoming era of personalized medicine and current global efforts in genome en-
gineering with advances in data analysis [1], increasing attention is being paid to the active
matter and its properties at the cell level [13]. This includes cells, their interactions, as well as
their intrinsic components such as microtubules, mitochondria, various other organelles, and



Swadesh Pal and Roderick Melnik

nuclei. Some such considerations are also important for neurodegenerative diseases. For exam-
ple, it is known that abnormal mitochondria in human Alzheimer’s disease (AD) brain neurons
are being accumulated, which resulted in more refined scrutiny of biogenesis and degradation
of mitochondria, as well as the related processes such as mitophagy and neuronal homeostasis
[2]. Equally important is further attention to autophagy and nuclear integrity, and in this
context it is also known that nucleophagy promotes longevity, given that distortion of nuclear
architecture happens during aging, accompanied by age-related pathology such as a disruption
of the nuclear lamina, etc. There is also an intrinsic connection between microtubules and AD
with other tauopathies due to the regulation of neuronal microtubule dynamics by tau proteins.
While some properties of microtubules have been studied (e.g., [14, 15] and references therein),
their complex dynamics require their analysis with more vigour due to many time-dependent
processes such as disaggregation. The latter plays a critical role in many neuropathologies and
neurodegenerative diseases including AD and Parkinson’s disease because the disassembly of
misfolded protein aggregates is a requirement for the proper functioning of cells in the brain.

The above considerations stimulate the development of advanced coupled spatio-temporal
dynamic models for the analysis of neurodegenerative disease pathologies and highlight the
importance of accounting for nonlocal and in some cases nonequilibrium, phenomena, as we
argue in this contribution.

2 COUPLING NEURONAL AND GLIAL CELLS

In this section, we underline the main types of coupling for modelling and analysis of neu-
rodegenerative diseases. Firstly, we note that neural cells alone are not sufficient, because we
have to account for their coupling to another special type of cells, namely glial (non-neuronal)
cells (or neuroglia, see [8] and references therein). In this consideration, microglia, which is a
type of neuroglia, play an important role. It is located throughout the brain with its volume
fraction taking around 10-15% of cells there. Its importance stems from the fact that they are
key central nervous system immune cells. In the sense that they destroy pathogens and remove
damaged cells, they are similar to macrophages. But they also can be harmful in neurodegen-
erative diseases, including AD and Parkinson’s disease. Hence, it is not surprising that they
have been studied extensively [6], albeit in many cases separately from the important coupling
considerations mentioned above.

Secondly, it is important to point out that in the coupled neural–glial dynamics, astrocytes
also play a critical role when it comes to such neurodegenerative diseases as AD [9]. Of-
ten interpreted as the “disease of forgetfulness”, AD is associated with the propagation and
aggregation of toxic proteins. It was already Alzheimer himself showed the importance of
both amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles (NFTs). By now it
is well known that in order to construct credible mathematical models in this field, we need
to couple the amyloid beta (which forms extracellular aggregates and plaques) and tau pro-
teins (which are intracellular proteins that stabilize axons by cross-linking microtubules that
can form largely messy tangles). Apparently, in many cases, it is a necessary, but not suffi-
cient condition because astrocytes and microglial cells constantly clear these plaques and NFTs
from the brain. In addition to their functionality related to the transportation of nutrients
from the blood to neurons, activated astrocytes produce monocyte chemoattractant protein-1
(MCP-1), which attracts anti-inflammatory macrophages and clears Aβ. The importance of
bringing the coupling of astrocytes into the picture comes from two main facts: (a) on the
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one hand, the microglia cells are poorly phagocytic for Aβ compared to proinflammatory and
anti-inflammatory macrophages, (b) on the other hand, we know that in addition to such dis-
tinctive neuropathological features of AD as amyloid beta and tau proteins, neuroinflammation
needs to be accounted for. Recently, taking advantage of a coupled mathematical modelling
framework, we formulated a network model, accounting for the coupling between neurons and
astroglia and integrating all three main neuropathological features with the brain connectome
data [9]. We also provided details on the coupled dynamics involving cytokines, astrocytes,
and microglia, and applied the developed ideas to the necrosis factor alpha (TNF-α) inhibitor
and anti-Aβ drug and analyzed their influence on the brain cells, suggesting conditions under
which the drug can prevent cell damage. We have also brought additional features to this
coupling, highlighting further the importance of astrocytes [19]. Due to a major challenge of
brain network modelling, its multi-scale spatio-temporal nature, covering scales from synapses
to the whole brain, it was necessary to develop a particular mathematical framework that would
account for the coupled multiphysics and biochemical activities which spread through such a
complex system shape brain capacity inside a structure-function relationship. This framework
has been part of our development of the next-generation coupled-based mathematical mod-
elling approaches to brain networks and the analysis of data-driven dynamical systems. Not
only AD is marked by the presence of amyloid-beta (Aβ) plaques and tau (τ) proteins, but some
disease-specific misfolded proteins can interact with healthy proteins to form long chains and
aggregates of different sizes that have different transport properties and toxicity. Therefore, we
proposed an improved large-scale brain network model to better understand the pathogenesis
of AD, especially the role of astrocytes in the presence of misfolded proteins (Aβ and τ). In
particular, the model can describe astrocytic clearance, which assists in eliminating toxic Aβ
via fragmentation. As a first step, we used the general Smoluchowski theory of nucleation,
aggregation, and fragmentation to predict the development and propagation of aggregates of
misfolded proteins in the brain. We demonstrated that the developed model leads to different
size distributions and propagation along the network and predicted that astrocytic clearance
varies with the aggregate size, which is key to slowing down AD progression. Further, we saw
that the clearance and fragmentation of toxic proteins span several spatial and temporal scales,
highlighting the importance of detailed multi-scale brain modelling and associated couplings
mentioned above.

3 COUPLING TO NEURAL DAMAGE AND MEMORY EFFECTS

This level of coupling was developed specifically in the AD context. Known to us due to
Alois Alzheimer, who first described the condition in 1906, the AD symptoms are mild at first
and become more severe over time. They typically include one of several characteristics such as
memory loss, cognitive deficits, problems with recognition, problems with speaking, reading, or
writing, and others. According to the Alzheimer’s Association, early onset Alzheimer’s disease
affects around 5.5 million Americans in the U.S., and 44 million worldwide deal with this
disease in all ranges of ages, while 10% of the population is suffering over 65 years of age [20].
We recall that the key characteristics of Alzheimer’s disease to start with are two abnormal
structures called plaques and tangles. They are prime suspects in damaging and killing nerve
cells. Hence, it is also important to incorporate into the model the coupling to neural damage.
The latter is usually critical in developing treatment strategies. As we mentioned above, plaques
are deposits of a protein fragment called Aβ that build up in the spaces between nerve cells,
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whereas tangles are twisted fibers of another protein called tau that build up inside cells. To
model their dynamics along with other features we mentioned becomes increasingly important
also because there is no single test for Alzheimer’s disease, and therefore the diagnosis is not
always easy. The doctor may carry out the following tests: cognitive and memory tests, to
assess the person’s ability to think and remember; neurological function tests, to test their
balance, senses, and reflexes; a CT scan or MRI scan of the brain; blood or urine tests; genetic
testing; and others.

The development of models accounting for the coupling to neural damage needs to account
for other levels of coupling already mentioned, in particular, astrocytes notwithstanding because
these glial cells can be in contact with thousands of neurons. Along with the features we already
mentioned, they are crucial to the nervous system [21] as they regulate synaptic transmission
and plasticity and protect neurons against toxic compounds; astrocytes support metabolically
to ensure their optimal functioning and without this help, neurons will not communicate; they
balance the ion concentrations in the brain; they maintain a healthy balance in the brain
by clearing the Aβ plaque; over-activated astrocytes release chemokines and cytokines in the
presence of Aβ and also react to pro-inflammatory cytokines, further increasing the production
of Aβ. Therefore, as a further development of [3], in [4] the authors have recently constructed
a mathematical model that can capture astrocytes’ dual behaviour. It was shown that the
disease propagation does not depend only on the current time instance; rather, it depends on
the disease’s earlier status, or to put it simply, the ”memory effect”. To capture the influence of
such memory effect on AD propagation, they proposed a fractional order network mathematical
model, which they integrated with brain connectome data in the network model. This allowed
them to study the memory effect and the dual role of astrocytes together. The neuronal
damage in the brain has been analyzed depending on toxic loads in the brain, so based on the
pathology, primary, secondary, and mixed tauopathies parameters were varied in the model.
It was revealed that due to the mixed tauopathy, different brain nodes or regions in the brain
connectome accumulate different toxic concentrations of toxic Aβ and toxic tau proteins. A
new plausible explanation was given on how the memory effect can slow down the propagation
of such toxic proteins in the brain, decreasing the rate of neuronal damage.

We note that both developed models, in [3] and [4], are nonlocal, with the first one repre-
senting nonlocality by integral convolution terms, and the second one representing nonlocality
by fractional time derivatives. Nonlocality can also come from other sources, including bound-
ary and initial conditions and the interested reader can consult [16] and references therein for
further details on this.

In both cases, whether we deal with the nonlocal model with integral terms or with fractional
time derivatives, as a first step, it is instructive to carry out homogenized systems analyses.
For example, before analyzing the full fractional order PDE-based models, we first studied
the model’s temporal dynamics (e.g., equilibrium points and their stabilities), where spatial
dependencies in the corresponding reaction-diffusion models were neglected. This provides
additional guidance. In the subsequent steps, we need to move to data-driven models by
integrating the data and developing corresponding coupled network models. Our computational
scheme for the network model construction can be briefly described as follows:

� first, we import the brain connectome data into the computational environment;

� then, we read the number of nodes, number of edges, mean fiber number and the mean
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length between the nodes;

� we compute the Laplacian L for the graph data by using the information on the con-
structed adjacency matrices;

� finally, we apply an efficient numerical method to solve the resulting coupled network
models.

Regarding the data source and associated methodologies for data analysis, we have used the
freely available patients connectome data found at and also the data from the Human Con-
nectome Project given by Budapest Reference Connectome v3.0 (). Specifically, we considered
brain connectome data consisting of 1,015 vertices and 16,280 edges. The integrated brain con-
nectome data has 49 brain IDs, each containing one or more nodes. Furthermore, each brain
region contains one or more brain IDs. All computations have been performed by using our
in-house developed code based on C programming language and Matlab. Both explicit and
implicit numerical methodologies have been used to solve coupled network models, depending
on the network complexity.

Some of the main results of this investigation included the following observations: (a) with
an increase in the clearance rate, the brain connectome’s toxic loads may decrease or increase,
depending on astrocyte carrying capacities, (b) based on the non-Markovian model, the higher
memory takes more time to distribute the overall toxic loads in the brain; (c) the analysis of
calculated average concentrations for the substances in each brain ID shows that due to the
non-uniform parameter set in the tau proteins’ equation, the toxic load converges to different
concentrations over the brain IDs, (d) the analysis of calculated average concentrations of the
substances in each brain region shows similar non-uniform toxic tau protein distributions over
the brain regions, but the nonlocal model based on fractional time derivatives slows down the
speed of the toxic load distributions in brain regions. As a result, the fractional-derivatives-
based model demonstrates less damage compared to the non-fractional integral-terms-based
model.

Overall, our fully coupled heterodimer model accounts for the interaction of Aβ and tau
protein, astrocytes, and neural damage, incorporating also memory effects in its non-Markovian
version. Importantly, the fractional-derivatives-based model includes the astrocytes’ equation
that allows to account for a dual role of astrocytes before and after the over-activation. The
study of memory effects in the disease progression based on the fractional-derivatives-based
model shows slowing down the speed of the disease propagation. Further detailed analysis
of the node- and region-wise disease propagation in the brain connectome with this model
demonstrates less toxic loads compared to the nonlocal model based on integral terms. This
model can be used in an experimental set-up for better data fitting due to its multiscale nature
and an additional degree of freedom compared to the integer-order nonlocal models.

4 WORKINGMEMORY IN NEURODEGENERATIVE DISEASES, STOCHAS-
TIC MODELLING AND NONEQUILIBRIUM CONSIDERATIONS

It is well known that working memory is affected early in many neurodegenerative diseases,
including Alzheimer’s disease. Although the human brain is the most complicated biological
structure on the planet, we also know well by now that conditions for learning do not occur
under equilibrium states. This leads us to nonequilibrium considerations once we want to do
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our next step in the model development for neurodegenerative diseases. On a bigger scale, life
itself is an ultimate nonequilibrium phenomenon, and all models considered in life sciences need
to reflect the stochastic nature of the associated dynamics of humans that can be geared toward
a better description of nonlocal and nonequilibrium phenomena of such dynamics when it is
required [5]. This consideration not only can assist us in a deeper understanding of the link
between nonequilibrium phenomena and neurodegenerative diseases, but also provides stairways
in biosocial and behavioral psychological approaches via the concept of decision making [22].
Indeed, three stepping stones in these stairways are: 1) knowledge creation and associated
decision-making steps are nonequilibrium processes; 2) a critical element for decision-making
is working memory, the brain’s ability to temporarily store and recall information, 3) working
memory is affected early during the onset of neurodegenerative diseases such as Alzheimer’s,
and can serve as a key to better understanding the course of such diseases and developing
treatments.

While there is a wider context where the above nonequilibrium problems are important, our
motivation here is routed in the analysis of neurodegenerative diseases. Starting from earlier
papers [23, 24], we know that Alzheimer’s and other kinds of dementia (e.g., frontotemporal
dementia [25]) affect working memory at an early stage, a critical element in decision-making
[22]. Specifically, it was observed that working memory is reduced in Alzheimer’s patients
as it works with semantic memory [23] which helps in understanding and recognizing words
for language processing, which is stored in the working memory. Further, we know also from
[24] (where working memory was measured by assessing participants’ ability to retain numbers)
and later works (based on other methodologies) that working memory is reduced in people with
mild cognitive impairment compared to those with normal cognitive functioning. In terms of
the mathematical modeling framework for working memory, here we follow the premises where
the Fokker-Planck equation is derived based on the Langevin equation. In doing so, we can
go beyond nonequilibrium models relaxing to equilibrium (e.g., those based on the Langevin
equation derived from a Hamiltonian and leading to Maxwell-Boltzmann or other standard
models relaxing to equilibrium such as Hohenberg-Halperin). Our interest is in Langevin equa-
tions which may not be even based on a Hamiltonian and can generally be far-from-equilibrium
models. We can move from this consideration to the Fokker-Planck model which ultimately
can even be considered in random (possibly switching) environments (e.g., [26]). As a starting
point, we begin with a set of Langevin equations describing the stochastic dynamics of neural
networks [27]. The approach is based on the landscape-flux method where one makes use of
the fact that the nonequilibrium system is driven by both the non-vanishing steady state irre-
versible probability flux and the gradient of the potential landscape in the state space (for the
equilibrium system, the driving force can be expressed by the gradient of an energy function).
Within this approach, various biophysics-based models for working memory can be integrated,
with one of the simplest examples found in [27]. As was demonstrated by the authors of this
latter paper, the flux can drive the system away from the local attractors, leading to another
attractor, and it is due to the existence of non-zero flux, the system never settles to any of
the local attractors. They concluded that the non-equilibrium flux facilitates the biological
functions of working memory from both the dynamical perspective and the thermodynamic
perspective, the situation which is fundamentally different from equilibrium cases.

Nonlocal models that we considered in the previous section are also important at smaller scale
levels, including cells under various loading conditions. Indeed, all biological cells are exposed
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to a variety of loads that influence cellular processes [13]. Hence, our better understanding of
cell mechanics under the application of external stimuli is important for capturing the nuances
of physiological and pathological events, and ultimately for the development of modern medical
therapies such as tissue engineering and regenerative medicine, as well as in the development
of new remedial treatments. As it was shown in [13], such considerations also require nonlocal
models. At the same time, at larger scales, such as the whole brain modelling, the current trend
focuses on various aspects of multiscale co-simulation protocols, in particular in the context of
various neurosurgical procedures such as Deep Brain Stimulation [17, 7].

Stochastic models in this field are not limited to the model we discussed above in this sec-
tion. Among others, we mention the models developed from the brain information processing
perspective, given that the brain is a complex information processing network in which the
nervous system receives information from the environment to quickly react to incoming events
or learns from experience to sharpen our memory [10]. Since the brain states translate the
collective activities of neurons interconnected via synaptic connections, it is also important
to study coupled effects of channels and synaptic dynamics under the stochastic influence of
healthy brain cells in the context of neurodegenerative disease development. Stochastic models
provide a suitable framework for modelling various aspects of neurodegenerative disease espe-
cially when combined with advanced tools in data-driven modelling, including the approximate
Bayesian computation (ABC) approach [11, 12]. In this spirit, we recently studied the role of
astrocytes in amyloid-beta dynamics with modelling of Alzheimer’s disease using clinical data
and quantified the interplay between amyloid-beta and calcium levels in Alzheimer’s disease.

5 KEY MODEL HIGHLIGHTS

The details of the nonlocal model with integral terms can be found in [3]. In what follows,
we provide the main details of our spatio-temporal fractional model in a spatial domain Ω ⊂ R3

as [4]:

Dα
t u = ∇ · (D1∇u) + u(a0 − a1u)− a2uũ, (1a)

Dα
t ũ = ∇ · (D̃1∇ũ)− ã1ũ+ a2uũ− µũ(w − ũ), (1b)

Dα
t v = ∇ · (D2∇v) + v(b0 − b1v)− b2vṽ − b3ũvṽ, (1c)

Dα
t ṽ = ∇ · (D̃2∇ṽ)− b̃1ṽ + b2vṽ + b3ũvṽ, (1d)

Dα
t w = w(c0 − w/c1), (1e)

where the first term on the right-hand side in each of the first four equations incorporates the
random movement of the concentrations in the domain Ω. We assume that the astrocytes’
density remains homogeneous in the whole domain Ω. We consider the same damage equation
as

Dα
t q = (k1ũ+ k2ṽ + k3ũṽ + k4q)(1− q), (2)

with the non-negative initial condition.
We have extended this model into a network mathematical model on the graph G, whose
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dynamics at each node j(j = 1, 2, 3, . . . , N) are given by

Dα
t uj = −

N∑
k=1

Lujkuj + uj(a0 − a1uj)− a2ujũj, (3a)

Dα
t ũj = −

N∑
k=1

Lũjkũj − ã1ũj + a2ujũj − µũj(wj − ũj), (3b)

Dα
t vj = −

N∑
k=1

Lvjkvj + vj(b0 − b1vj)− b2vj ṽj − b3ũjvj ṽj, (3c)

Dα
t ṽj = −

N∑
k=1

Lṽjkṽj − b̃1ṽj + b2vj ṽj + b3ũjvj ṽj, (3d)

Dα
t wj = wj(c0 − wj/c1), (3e)

and the corresponding damage equation is given by the corresponding fractional differential
equation

Dα
t qj = (k1ũj + k2ṽj + k3ũj ṽj + k4qj)(1− qj), (4)

with non-negative initial conditions. Further details and notations can be found in the quoted
references.

6 REPRESENTATIVE NUMERICAL RESULTS

In what follows we provide two representative examples obtained with the models discussed
above. All parameters that have been used are given in Tables 1, 2, and 3.

In the first figure, we can see the solutions for amyloid-beta concentrations, both healthy and
toxic, obtained with the nonlocal model with integral terms. The interest in these quantities
has grown dramatically since the introduction of two new Alzheimer’s disease drugs. First, in
2021 aducanumab received approval from the U.S. Food and Drug Administration, followed by
lecanemab in 2023.

Our second figure here represents a quick visual comparison between the results obtained
with the nonlocal model based on integral terms and the nonlocal model based on fractional
time derivatives that we discussed in the previous sections. Specifically, we have plotted the
brain region-wise average damage propagation.

Table 1: Synthetic parameter values [18].

Parameter Value Parameter Value Parameter Value Parameter Value
a0 1.035 a1 1.38 a2 1.38 ã1 0.828

b0 0.69 b1 1.38 b2 1.035 b̃1 0.552
b3 4.14 c0 1.0 c1 0.1 µ 0.1
ρ1 1.38 ρ2 0.138 ρ3 1.38 ρ4 0.014
k1 0.0001 k2 0.01 k3 0.1 k4 0.001
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Table 2: Modified b3 parameter values in different brain IDs [18].

Brain ID Value Brain ID Value
Pars opercularis 7.452 Rostral middle frontal gyrus 6.707
Superior frontal gyrus 7.452 Caudal middle frontal gyrus 7.452
Precentral gyrus 5.589 Postcentral gyrus 3.726
Lateral orbitofrontal cortex 6.486 Medial orbitofrontal cortex 6.486
Pars triangularis 5.520e-6 Rostral anterior cingulate 6.210e-6
Posterior cingulate cortex 3.45 Inferior temporal cortex 13.11
Middle temporal gyrus 11.04 Superior temporal sulcus 8.97
Superior temporal gyrus 8.28 Superior parietal lobule 12.42
Cuneus 13.8 Pericalcarine cortex 13.8
Inferior parietal lobule 11.73 Lateral occipital sulcus 15.18
Lingual gyrus 13.8 Fusiform gyrus 7.59
Parahippocampal gyrus 11.04 Temporal pole 1.104e-5

Table 3: Modified b2 and b3 parameter values in different brain IDs [18].

Brain ID Entorhinal cortex Pallidum Locus coeruleus Putamen Precuneus
b2 3.125 2.76 1.38 3.795 3.105
b3 1.104e-5 2.76 1.38 3.795 3.105

(a) (b)

Figure 1: The solutions of amyloid-beta (blue) and toxic amyloid-beta (red) for the non-
fractional temporal model of (1) for different values of µ and c1: (a) c1 = 0.1 and (b) c1 = 0.2.
Here, solid curves for µ = 0.1, dashed-dotted curves for µ = 0.3, and dotted curves for µ = 0.5.
Other fixed parameter values are mentioned in Table 1.
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(a) (b)

Figure 2: (Color online) Brain region-wise average damage propagation: (a) non-fractional
model and (b) fractional model with α = 0.8. Here, we choose the fixed parameter values
µ = 0.2, c1 = 0.3 and Table 1 for all the nodes in the brain connectome except the nodes listed
in Tables 2 and 3.

7 CONCLUSIONS

We provided an overview of recently developed nonlocal coupled models to study Alzheimer’s
disease, where amyloid-beta and tau proteins are among the main contributors to the devel-
opment or propagation of AD. We emphasized the special dual role of astrocytes and the
importance of their coupling modelling in the developed framework. It has been shown that
the disease propagation depends on memory effects, requiring a new non-Markovian model. The
procedure of the integration of brain connectome data in the network model has been given.
Among the results, we pointed out that the memory effect can slow down the propagation of
toxic proteins in the brain, decreasing the rate of neuronal damage. The developed nonlocal
coupled models can be applied to analyze different pathologies in the brain. We provided rep-
resentative numerical examples. Additionally, we explained why nonequilibrium considerations
and stochastic modelling frameworks in the study of neurodegenerative diseases are becom-
ing increasingly important. In this context, we emphasized that in studying brain network
models and associated information dynamics, some particular characteristics such as working
memory play a special role. Starting with Langevin equations, we moved to Fokker-Planck
type models, where the nonequilibrium landscape-flux method can be applied for the analysis
of the system’s states. This methodology is traditionally useful in analyzing the systems that
can abandon a given attractor, breaks the symmetry of the landscape under certain stimuli
or distractor stimuli, erase the previous memory, and encode the new one. Given that this
nonequilibrium approach provides a general way to study the dynamics of neural systems and
working memory, it can be beneficial to apply it to the analysis of neurodegenerative diseases,
including Alzheimer’s disease and other types of dementia.

REFERENCES

[1] Papadakis, G. Z. et al. Deep learning opens new horizons in personalized medicine. Biomed.
Rep. (2019) 10(4): 215-217.

10



Swadesh Pal and Roderick Melnik

[2] Markaki, M., Tsagkari, D. and Tavernarakis, N. Mitophagy and long-term neuronal home-
ostasis. Journal of Cell Science (2023) 136: jcs260638.

[3] Pal, S. and Melnik, R. Nonlocal models in the analysis of brain neurodegenerative protein
dynamics with application to Alzheimer’s disease. Scientific Reports (2022) 12:7328.

[4] Pal, S. and Melnik, R. Non-Markovian behaviour and the dual role of astrocytes in
Alzheimer’s disease development and propagation. arXiv: 2208.03540 (2023).

[5] Thieu, T. and Melnik, R. Human biosocial dynamics with complex psychological behaviour:
Hierarchy of mathematical models and nonequilibrium phenomena. Nonequilibrium Phe-
nomena: From Quantum to Macroscopic Scales, XXVII Sitges Conference on Statistical
Mechanics (2023) 77.

[6] Tremblay, M.-E. and Sierra, A. Microglia in Health and Disease. Springer (2014).

[7] Shaheen, H., Pal, S. and Melnik, R. Multiscale co-simulation of deep brain stimulation
with brain networks in neurodegenerative disorders. Brain Multiphysics (2022) 3:100058.

[8] Shaheen, H., Singh, S. and Melnik, R. A neuron-glial model of exosomal release in the
onset and progression of Alzheimer’s disease. Frontiers in Computational Neuroscience
(2021) 15: 653097.

[9] Pal, S. and Melnik, R. Coupled neural-glial dynamics and the role of astrocytes in
Alzheimer’s disease. Mathematical and Computational Applications (2022) 27 (3): 33.

[10] Thieu, T. K. T. and Melnik, R. Coupled effects of channels and synaptic dynamics in
stochastic modelling of healthy and Parkinson’s-disease-affected brains. AIMS Bioengi-
neering (2022) 9 (2): 213-238.

[11] Shaheen, H., Melnik, R. and ADNI. Bayesian inference and role of astrocytes in amyloid-
beta dynamics with modelling of Alzheimer’s disease using clinical data. arXiv:2306.12520
(2023).

[12] Shaheen, H., Melnik, R., Singh, S. and ADNI. Data-driven stochastic model for quan-
tifying the interplay between amyloid-beta and calcium levels in Alzheimer’s disease.
arXiv:2306.10373 (2023).

[13] Singh, S., Krishnaswamy, J. A. and Melnik, R. Biological cells and coupled electro-
mechanical effects: The role of organelles, microtubules, and nonlocal contributions. J.
Mech. Behav. Biomed. Mater. (2020) 110: 103859.

[14] Singh, S. and Melnik, R. Microtubule biomechanics and the effect of degradation of elastic
moduli. Computational Science - ICCS 2020: 20th International Conference, Amsterdam,
The Netherlands, June 3-5, 2020, Proceedings, Part VI 20. Springer (2020) 348-358.

[15] Singh, S. and Melnik, R. Coupled electro-mechanical behavior of microtubules. Bioinfor-
matics and Biomedical Engineering: 8th International Work-Conference, IWBBIO 2020,
Granada, Spain, May 6-8, 2020, Proceedings 8. Springer (2020) 75-86.

11



Swadesh Pal and Roderick Melnik

[16] Sytnyk, D. and Melnik, R. Mathematical models with nonlocal initial conditions. Mathe-
matical and Computational Applications (2021) 26 (4): 73.

[17] Shaheen, H. and Melnik, R. Deep Brain Stimulation with a computational model for
the cortex-thalamus-basal-ganglia system and network dynamics of neurological disorders.
Computational and Mathematical Methods (2022) 8998150.

[18] Thompson, T.B., Chaggar, P., Kuhl, E., Goriely, A. Protein-protein interactions in neu-
rodegenerative diseases: A conspiracy theory. PLoS Comput. Biol. (2020) 16: e1008267.

[19] Shaheen, H., Pal, S. and Melnik, R. Astrocytic clearance and fragmentation of toxic pro-
teins in Alzheimer’s disease on large-scale brain networks. Phys. D: Nonlinear Phenom.
Accepted (2023).

[20] Alzheimer Association. Alzheimer’s disease facts and figures. Alzheimer’s Dementia (2017)
13: 325–373.

[21] Trujillo-Estrada, L. et al. Astrocytes: From the Physiology to the Disease. Current
Alzheimer research (2019) 16: 675–698.

[22] Thieu, T. and Melnik, R. Social human collective decision-making and its applications
with brain network models. Crowd Dynamics, Vol. 4 (Eds. N. Bellomo and L. Gibelli),
Springer-Birkhauser, Accepted (2023).

[23] Kensinger, E. A. et al. Working memory in mild Alzheimer’s disease and early Parkinson’s
disease. Neuropsychology (2003) 17: 230-239.

[24] Gagnon L. G. and Belleville, S. Working memory in mild cognitive impairment and
Alzheimer’s disease : contribution of forgetting and predictive value of complex span tasks.
Neuropsychology (2011) 25: 226-236.

[25] Stopford, C. L. et al. Working memory, attention, and executive function in Alzheimer’s
disease and frontotemporal dementia. Cortex (2012) 48: 429-446.

[26] Bressloff, P. C. Stochastic Fokker-Planck equation in random environments. Phys. Rev. E
(2016) 94: 042129.

[27] Yan, H. and Wang, J. Non-equilibrium landscape and flux reveal the stability-flexibility
energy tradeoff in working memory. PLoS Comput. Biol. (2020) 16: e1008209.

12


	INTRODUCTION
	COUPLING NEURONAL AND GLIAL CELLS
	COUPLING TO NEURAL DAMAGE AND MEMORY EFFECTS
	WORKING MEMORY IN NEURODEGENERATIVE DISEASES, STOCHASTIC MODELLING AND NONEQUILIBRIUM CONSIDERATIONS
	KEY MODEL HIGHLIGHTS
	REPRESENTATIVE NUMERICAL RESULTS
	CONCLUSIONS

